Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 , a - ( a - b - c ) - ( b - c -a ) - ( c - b -a )
= a - a + b + c - b + c + a - c + b + a
= (a-a+a) + (b-b+b) + (c-c+c)
= a+b+c
2 , - ( a + b + c ) - ( b - c -a ) + ( 1 - a - b ) - ( c - 3b )
= -a - b - c - b + c + a + 1 - a - b - c + 3b
= (a+a-a) - (b+b+b) + (c-c+c) + 3b
= a - 3b + c + 3b
= a+c + (3b - 3b)
= a+c + 0
= a+c
3 , ( b - c - 6 ) - ( 7 - a + b ) + c
= b - c - 6 - 7 + a - b + c
= (b-b) + (c-c) - (6+7) + a
= 0 + 0 - 13 + a
= -13 + a
4 , - ( 3b - 2a - c ) - ( a - b - c ) - ( a - 2b -+ 2c )
= -3b + 2a + c - a + b + c - a + 2b - 2c
= -3b + (2b + b) + (c + c) - (a+a) +2a - 2c
= -3b + 3b + 2c - 2a + 2a - 2c
= (3b - 3b) + (2c - 2c) + (2a + 2a)
= 0 + 0 + 0
= 0
chỉ bt lm đến đây thoy
i-------------7jhmnjbn,j,mn.kmlk.jk,hkghnmgvbvcbvcbcvbcvbcbbccbcbcb
''';l';.;';p''ơ'1) a - ( a - b - c ) - ( b - c - a ) - ( c - b - a )
= a - a + b + c - b + c + a - c + b + a
= 2a + b + c
2) - ( a + b + c ) - ( b - c - a ) + ( 1 - a - b ) - ( c - 3b )
= -a - b - c - b + c + a + 1 - a - b - c + 3b
= 1 - a - c
1,a-(a-b-c)-(b-c-a)-(c-b-a)
=a-a+b+c-b+c+a-c+b+a
=2a+b+c
2,-(a+b+c)-(b-c-a)+(1-a-b)-(c-3b)
=-a-b-c-b+c+a+1-a-b-c+3b
=1-a-c
3,(b-c-6)-(7-a+b)+c
=b-c-6-7+a-b+c
=a-13
4,-(3b-2a-c)-(a-b-c)-(a-2b+2c)
=-3b+2a+c-a+b+c-a+2b-2c
=0
5,(4a-3b+2c)-(4b-3c-2a)-(4c-3a+2b)+(a-b)-c
=4a-3b+2c-4b+3c+2a-4c+3a-2b+a-b-c
=(4a+2a+3a+a)-(3b+4b+2b+b)+(2c+3c-4c-c)
=10a-10b+0
=10.(a-b)
6,
2a-{a-b[a-b-(a+b+c)+2b]-c-b}
=2a-{a-b[a-b-a-b-c+2b]-c-b}
=2a-a-bc+c+b
=a-bc+c+b
=(a+b)-b(c-1)
a - ( a - b - c ) - ( b - c - a ) - ( c - b - a)
= a - a + b + c - b + c + a - c + b + a
= ( a -a + a ) + ( b - b + b ) + ( c + c - c) ( vì mình ko có ngoặc vuông nên chỉ thế này thôi)
= a + b + c
Bạn tự làm hết nha
1)=>a-a+b+b-b+c+a-c+b+a=2a+2b+c=2(a+b)+c
2)=>-a-b-c-b+c+a+1-a-b-c+3b=-a
3)=>b-c-6-7+a-b+c=-13+a
4)-3b+2a+c-a+b+c-a+2b-2c=0
5)=>4a-3b+2c-4b+3c+2a-4c+3a-2b+a-b-c=-2a-10b-2c
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\)
Ta có:
Nếu:
\(\dfrac{2a+c}{2b+d}=\dfrac{a-c}{b-d}\Leftrightarrow\left(2a+c\right)\left(b-d\right)=\left(a-c\right)\left(2b+d\right)\)
\(\Leftrightarrow2a\left(b-d\right)+c\left(b-d\right)=a\left(2b+d\right)-c\left(2b+d\right)\)
\(\Leftrightarrow2ab-2ad+bc-cd=2ab+ad-2bc+cd\)
\(\Leftrightarrow ad=bc\)
\(\Leftrightarrow\dfrac{2a+c}{2b+d}=\dfrac{a-c}{b-d}\left(đpcm\right)\)
Bài này chắc phải giải theo kiểu lớp 7
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2a}{3b}=\dfrac{3b}{4c}=\dfrac{4c}{5d}=\dfrac{5d}{2a}=\dfrac{2a+3b+4c+5d}{3b+4c+5d+2a}=1\)
\(\Rightarrow\left\{{}\begin{matrix}2a=3b\\3b=4c\\4c=5d\\5d=2a\end{matrix}\right.\)\(\Rightarrow2a=3b=4c=5d\)
\(\Rightarrow C=\dfrac{2a}{3b}+\dfrac{3b}{4c}+\dfrac{4c}{5d}+\dfrac{5d}{2a}\)
\(=\dfrac{2a}{2a}+\dfrac{2a}{2a}+\dfrac{2a}{2a}+\dfrac{2a}{2a}\)
\(=1+1+1+1\)
\(=4\)
Vậy \(C=4\)
2, - ( a + b + c ) - ( b - c -a ) + ( 1 - a - b ) - ( c - 3b )
= -a - b -c - b + c + a + 1 - a - b - c + 3b
= (a-a) - (b+b+b) + (c-c) + (-a) + (-c) + 3b
= 0 - 3b + 0 + (-a) + (-c) + 3b
= (3b-3b) + (-a) + (-c)
= 0 + (-a) + (-c)
= (-a) + (-c)
3, ( b - c - 6 ) - ( 7 - a + b ) + c
= b - c - 6 - 7 + a - b + c
= (b-b) + (c-c) - (6+7) + a
= 0 + 0 + 13 + a
= 13 + a
6, 2a - { a - b [ a - b - ( a + b + c ) + 2b ] - c - b }
= 2a - { a - b [ a - b - a - b - c + 2b ] - c - b }
= 2a - { a - b [ ( a - a ) - (b+b) - c + 2b ] - c - b }
= 2a - { a - b [ 0 - 0 - 2b - c + 2b ] - c - b }
= 2a - { a- b [ (2b - 2b) - c ] - c - b }
= 2a - { a - b [ 0 - c ] - c - b }
= 2a - { a - b.(-c) - c - b}
= 2a - a - b.(-c) - c - b
= 1a - (-b).c - c - b
= a - (-b).c - c.1 - b
= a - [(-b) - 1].c - b
ko chắc lắm
b)B=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\)
B<\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)
B<\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
B<\(1+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+...+\left(\dfrac{1}{8}+\dfrac{1}{8}\right)-\dfrac{1}{9}\)
B<1-\(\dfrac{1}{9}\)
B<\(\dfrac{8}{9}\)(1)
ta có:
B>\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
B>\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{10}\)
B>\(\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)...+\left(\dfrac{1}{9}+\dfrac{1}{9}\right)-\dfrac{1}{10}\)
B>\(\dfrac{1}{2}-\dfrac{1}{10}\)
B>\(\dfrac{2}{5}\)
\(\dfrac{a}{2}=\dfrac{b}{3}\Rightarrow b=\dfrac{3}{2}a\)
\(\dfrac{a}{2}=\dfrac{c}{5}\Rightarrow c=\dfrac{5}{2}a\)
=>B=\(\dfrac{a+7\cdot\left(\dfrac{3}{2}a\right)-2\cdot\left(\dfrac{5}{2}a\right)}{3a+2\cdot\left(\dfrac{3}{2}a\right)-\dfrac{5}{2}a}=\dfrac{a+\dfrac{21}{2}a-5a}{3a+3a-\dfrac{5}{2}a}=\dfrac{\dfrac{13}{2}a}{\dfrac{7}{2}a}=\dfrac{13}{7}\)
\(\dfrac{1}{2a-1}=\dfrac{2}{3b-1}=\dfrac{3}{4c-1}\Rightarrow\dfrac{2a-1}{1}=\dfrac{3b-1}{2}=\dfrac{4c-1}{3}\)
\(\Rightarrow\dfrac{36a-18}{18}=\dfrac{24b-8}{16}=\dfrac{12c-3}{9}\)và 3a+2b-c=4
Áp dụng t/c dãy tỉ số bằng nhau:
\(\dfrac{36a-18}{18}=\dfrac{24b-8}{16}=\dfrac{12c-3}{9}=\dfrac{36a-18+24b-8-12c+3}{18+16-9}=\dfrac{12\left(3a+2b-c\right)-23}{25}=\dfrac{12\cdot4-23}{25}=1\)
=>2a-1=1<=>a=1
3b-1=2<=>b=1
4c-1=3<=>c=1
Vậy...
thanks nhìu nha