K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2017

a) Đặt \(A'=3^2+3^3+...+3^{100}\), ta có \(A=3-A'\)

Ta tính A'.

\(3A'=3^3+3^4+...+3^{100}+3^{101}\)

\(A'=3^2+3^3+...+3^{100}\)

\(\Rightarrow2A'=3^{101}-9\Rightarrow A'=\frac{3^{101}-9}{2}\)

Vậy \(A=3-\frac{3^{101}-9}{2}=\frac{6-3^{101}+9}{2}=\frac{15-3^{101}}{2}\)

b) Đặt \(C=4+4^3+4^5+...+4^{101}\)

\(D=1+4^2+4^4+4^6+...+4^{100}\)

Ta có \(16C=4^3+4^5+4^7+...+4^{101}+4^{103}\)

\(\Rightarrow15C=4^{103}-4\Rightarrow C=\frac{4^{103}-4}{15}\)

Ta có \(16D=4^2+4^4+4^6+4^8+...+4^{100}+4^{102}\)

\(\Rightarrow15D=4^{102}-1\Rightarrow D=\frac{4^{102}-1}{15}\)

Vậy \(B=-C+D=-\frac{4^{103}-4}{15}+\frac{4^{102}-1}{15}=\frac{4^{102}-4^{103}+3}{15}\)

\(=\frac{3.4^{102}+3}{15}=\frac{4^{102}+1}{5}\)

19 tháng 1 2016

a,1-3+5-7+9-.......+33-35

=(1+5+9+....+33)-(3+7+11+...+35)

=153-171

=-18

Tick mk vài cái lên 300 mk giải nốt phần b

19 tháng 1 2016

Tính thế đầy đủ các bước chưa b?

25 tháng 8 2021

trên đầu bài là giấu phẩy hay giấu nhân thế

 

25 tháng 8 2021

\(a,2^2=4,2^3=8,2^4=16,2^5=32,2^6=64,2^7=128,2^8=256,2^9=512,2^{10}=1024\)

\(b,3^2=9,3^3=27,3^4=81,3^5=243\)

\(c,4^2=16,4^3=64,4^4=256\)

\(d,5^2=25,5^3=125,5^4=625\)

 

xin lỗi bài trên của mình làm sai

Ta có: 3A = 3.(1+3+32+33+...+399+3100) 

3A = 3+32+33+...+3100+3101

Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)

2A = 3101−1

⇒ A = 3101−1

             2               

Vậy A = 3101−1

                 2           

                           

AH
Akai Haruma
Giáo viên
5 tháng 2

Bài 1:

a. $2^{29}< 5^{29}< 5^{39}$

$\Rightarrow A< B$

b.

$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$

$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$

$=(1+3)(3+3^3+3^5+...+3^{2009})$

$=4(3+3^3+3^5+...+3^{2009})\vdots 4$

Mặt khác:

$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$

$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$

$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$

AH
Akai Haruma
Giáo viên
5 tháng 2

Bài 1:
c.

$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$

$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$

$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$

$\Rightarrow A=\frac{3^{101}+1}{4}$

30 tháng 11 2021

\(A=1+3+3^2+3^3+...+3^{100}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{101}\)

Trừ theo vế:

\(\Rightarrow3A-A=\left(3+3^2+3^3+...3^{101}\right)-\left(1+3+3^2+...+3^{100}\right)\)

\(2A=3^{101}-1\Rightarrow A=\dfrac{3^{101}-1}{2}\)

 

24 tháng 10 2021

undefined

24 tháng 10 2021

A =1+3+32 +33 +...+ 3100

3A=3.(30+3+32 +33 +...+ 3100)

3A=31+32 +33 +...+ 3101

3A-A=(31+32 +33 +...+ 3101)-(30+3+32 +33 +...+ 3100)

2A=3101-30

A=(3101-1) :2

vậy A=(3101-1) :2

t.i.c cho mình nha

 

13 tháng 12 2021

Tham khảo

Ta có: 3A = 3.(1+3+32+33+...+399+3100)(1+3+32+33+...+399+3100)

3A = 3+32+33+...+3100+31013+32+33+...+3100+3101

Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)(3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)

2A = 3101−13101−1

⇒⇒ A = 3101−123101−12

Vậy A = 3101−12