K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2019

TL:

a)\(2+4+6+...+2000=\frac{\left(2+2000\right).\left[\left(2000-2\right):2+1\right]}{2}\) 

\(=1001000\)

Câu b tương tự nha bạn:)

c) Đặt 1.2+2.3+....+99.100 =A

\(3A=1.2.3+2.3.\left(4-1\right)+...+99.100.\left(101-98\right)\) 

\(3A=1.2.3+2.3.4-1.2.3+...99.100.101-98.99.100\) 

\(3A=99.100.101\) 

\(A=333300\) 

Vậy .....

5 tháng 9 2016

a) Đặt A= 2+4+6+...+1998+2000 

Ta có: A=(2+2000).1000:2

=> A=2002.1000:2

=> A=2002000:2

=> A=1001000

b) Đặt B= 5+9+13+...+1997+2001 

=> B=(2001+5).500:2

=> B=2006.500:2

=> B=1003000:2

=> B=501500

c)Đặt S= 1.2 + 2.3 + 3.4 + ...+ 99.100
=> 3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3S = 99.100.101 => 3S = 3.33.100.101 
=> S=33.100.101= 333300

22 tháng 11 2018

Hai câu đầu là tính tổng của dãy số cách đều học từ lớp 5

Câu c/

3C=1.2.3+2.3.3+3.4.3+...+99.100.3=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)

3C=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=99.100.101=>B=33.100.101

16 tháng 8 2020

A) Ta có S = 1.2 + 2.3 + 3.4 + ... + 99.100

=> 3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3

=> 3S = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + .... + 99.100.(101 - 98)

=> 3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 99.100.101 - 98.99.100

=> 3S = 99.100.101

=> 3S =  999900

=> S = 333300

b) Để A đạt giá trị nhỏ nhất

=> (x - 1)2 nhỏ nhất 

mà \(\left(x-1\right)^2\ge0\forall x\)

=> (x - 1)2 = 0 là giá trị nhỏ nhất của (x - 1)2

=> x - 1 = 0

=> x = 1

Vậy khi x = 1 thì A đạt giá trị nhỏ nhất

Để |x + 4| + 1996 đạt giá trị nhỏ nhất

=> |x + 4| nhỏ nhất

mà \(\left|x+4\right|\ge0\forall x\)

=> Giá trị nhỏ nhất của |x + 4| khi |x + 4| = 0

=> x + 4 = 0

=. x = -4

Vậy khi x = -4 thì B đạt GTNN

6 tháng 5 2016

A = 1.2 + 2.3 + 3.4 + ....... + 99.100

3A = 1.2.3 + 2.3.3 + 3.4.3 + ....... + 99 . 100 . 3

3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2)  +.... + 99.100.(101-98)

3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + 99 . 100 . 101 - 98 . 99 . 100

3A = (1.2.3 - 1.2.3) + (2.3.4-2.3.4) + ... + (98.99.100 - 98.99.100) + 99  . 100 . 101

3A = 99 . 100 . 101 = 999900

A = 999900 : 3 = 333300

A=1*2+2*3+3*4+...+99*100

A=100*101*102:3

A=343400(công thức)

 

 

9 tháng 9 2018

A = 1.2 + 2.3 + 3.4 + ... + 99.100

3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3

3A = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) +...+ 99.100.(101-98)

3A = 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100

3A = 99.100.101

A = 333300

26 tháng 1 2017

A = 1.2+2.3+3.4+......+99.100 
Gấp A lên 3 lần ta có: 
A . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3 
A . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98) 
A . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100 
A . 3 = 99.100.101 
A = 99.100.101 : 3 
A = 33.100.101 
A = 333 300

9 tháng 6 2017

Đặt A = 1.2+2.3+3.4+....+98+99

ð     3a = 1.2.3-1.2.3+2.3.4+...+98.99.100

ð     3a=98.99.100

ð     A=98.99.100/3

ð     A=323400

9 tháng 6 2017

Đặt A = 1.2 + 2.3 + 3.4 + ...... + 98.99

=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ....... + 98.99.100

=> 3A = 98 .99.100

=> A = 98 .99.100/3 

=> A = 323400 

23 tháng 6 2015

nhân 3 vào mỗi hạng tử ta được:

3*(1.2+2.3+3.4+...+99.100)

= 1.2.(3-0)+ 2.3.(4-1)+ 3.4.(5-2)+... + 99.100.(101-98)

=1.2.3 + 2.3.4 -1.2.3 + 3.4.5 -2.3.4 +... + 99.100.101 - 98.99.100

= 99.100.101

Vậy tổng ban đầu 99.100.101/3= 33.100.101

Vậy tổng trên chia hết cho 2;3;4;5;10

5 tháng 1 2018

A=330

5 tháng 1 2018

a=49.5

29 tháng 8 2021

E = 1.2+2.3+3.4+......+99.100
Gấp E lên 3 lần ta có:
E . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
E . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
E . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100                                                                                       E . 3 = 99.100.101
E = 99.100.101 : 3
E = 33.100.101
E = 333 300

k mik nha

E = 1.2 + 2.3 + 3.4 + ... + 99.100

=> 3E = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3

=> 3E = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) +...+ 99.100.(101-98)

=> 3E = 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100

=> 3E = 99.100.101

=> E = 333300