Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì ABCD là hình thang ( \(AB//CD\))
\(\Rightarrow\widehat{B}+\widehat{C}=180^o\)
mà \(\widehat{B}-\widehat{C}=50^o\)\(\Rightarrow\widehat{B}=\frac{180^o+50^o}{2}=115^o\)
\(\Rightarrow\widehat{C}=180^o-115^o=65^o\)
Vì \(AB//CD\)\(\Rightarrow\widehat{A}+\widehat{D}=180^o\)
mà \(\widehat{A}=\frac{1}{3}.\widehat{D}\)\(\Rightarrow\frac{1}{3}.\widehat{D}+\widehat{D}=180^o\)
\(\Rightarrow\frac{4}{3}.\widehat{D}=180^o\)\(\Rightarrow\widehat{D}=135^o\)\(\Rightarrow\widehat{A}=\frac{1}{3}.135^o=45^o\)
Vậy \(\widehat{A}=45^o\); \(\widehat{B}=115^o\); \(\widehat{C}=65^o\); \(\widehat{D}=135^o\)
Vì ABCD là hình thang ( AB // CD )
\(\Rightarrow\hept{\begin{cases}\widehat{A}+\widehat{B}=180^o\\\widehat{C}+\widehat{D}=180^o\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\widehat{B}=\left(180+50\right):2=165^o\\\widehat{C}=165-50=95^o\end{cases}}\)
+) \(\widehat{A}=\frac{1}{3}\widehat{D}\)
\(\Rightarrow\widehat{D}=3\widehat{A}\)
\(\Rightarrow\widehat{A}+\widehat{D}=\widehat{A}+3\widehat{A}=4\widehat{A}=180^o\)
\(\Rightarrow\widehat{A}=180:4=45^o\)
\(\widehat{D}=3\widehat{A}=45.3=135^o\)
ta có : gócA+gócD=180 ; gócB+gócC=180 (tính chất hình thang)
Góc B=(180+50):2 =165
Góc C=165-50=95
A=1/3D=>D=3A
=>A+D=A+3A=4A=180
=>A=180:3=45 ; D=3A=45.3=135
Do hình thang ABCD (AB//CD)
\(\Rightarrow\widehat{A}+\widehat{D}=180^o\)
\(\Rightarrow\widehat{D}=180^o-110^o=70^o\)
\(\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{B}=180^o-50^o=130^o\)
Bafi1: Do AB // CD ( GT )
⇒ˆA+ˆC=180o
⇒2ˆC+ˆC=180o
⇒3ˆC=180o
⇒ˆC=60o
⇒ˆA=60o.2=120o
Do ABCD là hình thang cân
⇒ˆC=ˆD
Mà ˆC=60o
⇒ˆD=60o
AB // CD ⇒ˆD+ˆB=180o
⇒ˆB=180o−60o=120o
Vậy ˆA=ˆB=120o;ˆC=ˆD=60o
Bài 2:
Ta có; AB//CD
\(\Rightarrow\)góc BAD+ góc ADC= \(180^o\)
^A=3. ^D \(\Rightarrow\)\(\dfrac{A}{3}\)=^D
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{A}{3}=\dfrac{D}{1}=\dfrac{A+D}{3+1}=\dfrac{180^O}{4}=45^O\)
\(\Rightarrow\)^A= \(135^O\)
\(\Rightarrow\)^D=\(45^o\)
\(\Rightarrow B=A=135^o\)
\(\Rightarrow C=D=45^o\)