Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Py-ta-go vào tam giác ACM, ta có:
\(AM^2+CM^2=CA^2\)
Hay \(3,5^2+CM^2=5^2\)=>\(CM^2\)=25-12,25=12,75 => CM=\(\sqrt{12,75}\)
Vì M là trung điểm của CB => CM =MB =\(\sqrt{12,75}\)
=> CB= 2. \(\sqrt{12,75}\) =\(\sqrt{51}\)
Áp dụng định lí Py-ta-go vào tam giác ABC, ta có:
AC^2+AB^2=BC^2
Hay 5^2+AB^2=\(\sqrt{51}^2\)
=>AB=\(\sqrt{26}\)
b) BN=\(\frac{\sqrt{26}}{2}\)
CP=\(\frac{\sqrt{74}}{2}\)
Hình như vậy đó bạn
Đặt AB=a; AC=b
Theo đề, ta có: a/3=b/4
Đặt a/3=b/4=k
=>a=3k; b=4k
Theo đề, ta có: 3k+4k+5k=36
=>12k=36
=>k=3
=>AB=9; AC=12; BC=15
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE và DA=DE
b: Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔADF=ΔEDC
Suy ra: AF=EC
=>BF=BC
hay ΔBFC cân tại B
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
a: BC=căn 3^2+4^2=5cm
b,d: Đề bài yêu cầu gì?
c: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>DA=DE
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC