Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x−3y/5=5y−2z/3=3z−5x/2=10x-15y/25=15y-6z/9=6z-10x/4=...+..+..../25+9+4=0/31=0
=> 2x=3y; 5y=2z ; 3z=5x => x/3=y/2; y/2=z/5
=> x/3=y/2 =z/5 = 12x/36=5y/10=3z/15= (12x+5y-3z)/31
x/3 = 3y/6=2z/10 = (x-3y+2z)/7
=> (12x+5y-3z)/ (x-3y+2z)=31/7
Xét \(x+y+z=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+z=-x\\z+x=-y\\x+y=-z\end{matrix}\right.\)
\(\Rightarrow A=\left(2-1\right)\left(2-1\right)\left(2-1\right)=1\)
Xét \(x+y+z\ne0\) thì ta có:
\(\dfrac{x}{y+z+3x}=\dfrac{y}{z+x+3y}=\dfrac{z}{x+y+3z}=\dfrac{x+y+z}{5x+5y+5z}=\dfrac{x+y+z}{5\left(x+y+z\right)}=\dfrac{1}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}5x=y+z+3x\\5y=z+x+3y\\5z=x+y+3z\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=y+z\\2y=z+x\\2z=x+y\end{matrix}\right.\)
\(\Rightarrow A=\left(2+2\right)\left(2+2\right)\left(2+2\right)=64\)
Vậy \(\left[{}\begin{matrix}A=1\\A=64\end{matrix}\right.\)
Nếu bị lỗi thì bạn có thể xem đây nhé:
Ta có: 6x = 4y => x/4 = y/6
4y = 3z => y/3 = z/4 => y/6 = z/8
=> x/4 = y/6 = z/8
Đặt \(\frac{x}{4}=\frac{y}{6}=\frac{z}{8}=k\) => x = 4k; y = 6k; z = 8k
Khi đó, ta có:
M = \(\frac{2.\left(4k\right)^2+5.\left(6k\right)^2-4.\left(8k\right)^2}{7.\left(4k\right)^2-4.\left(6k\right)^2+3.\left(8k\right)^2}\)
= \(\frac{2.4^2.k^2+5.6^2.k^2-4.8^2.k^2}{7.4^2.k^2-4.6^2.k^2+3.8^2.k^2}\)
= \(\frac{k^2.\left(2.16+5.36-4.64\right)}{k^2.\left(7.16-4.36+3.64\right)}\)
= \(\frac{32+180-256}{112-144+194}\)
= \(\frac{-44}{162}=-\frac{22}{81}\)
thay x = -1 , y = -1 , z = -1 vào N ta có
N = 1 + (-1) + 1 + ... + 1 + (-1)
= [1 + (-1)] + [1 + (-1) ] + ... + [1 + (-1)]
= 0 + 0 + ... + 0
= 0
\(M.N=2x^3y^3z.\dfrac{1}{2}x^3y^3z=\left(2.\dfrac{1}{2}\right)\left(x^3.x^3\right)\left(y^3.y^3\right)\left(z.z\right)=x^6y^6z^2\)
M x N = 2x3 . y3z . \(\dfrac{1}{2}\)x3 y3 z
= (x3 . x) . (y3 . y3) . (z . z) . \(\left(2.\dfrac{1}{2}\right)\)
= 1. x4 . y9 . z2
= x4y9z2