Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4}{3\cdot7}+\frac{5}{7\cdot12}+\frac{1}{12\cdot13}+\frac{7}{13\cdot20}+\frac{3}{20\cdot23}\)
\(\frac{4}{3.7}+\frac{5}{7.12}+\frac{1}{12.13}+\frac{7}{13.20}+\frac{3}{20.23}=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+...+\frac{1}{20}-\frac{1}{23}=\frac{1}{3}-\frac{1}{23}=\frac{20}{69}\)
\(\frac{4}{3\cdot7}+\frac{5}{7\cdot12}+\frac{1}{12\cdot13}+\frac{7}{13\cdot20}+\frac{8}{20\cdot28}\)
\(\frac{4}{3\cdot7}+\frac{5}{7.12}+..+\frac{8}{20\cdot28}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+...+\frac{1}{20}-\frac{1}{28}\)
\(=\frac{1}{3}-\frac{1}{28}+0+...+0\)
\(=\frac{25}{84}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+...+\frac{1}{20}-\frac{1}{28}\)
\(=\frac{1}{3}-\frac{1}{28}\)
\(=\frac{25}{84}\)
\(A=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(=7.\frac{1}{10.11}+7.\frac{1}{11.12}+7.\frac{1}{12.13}+...+7.\frac{1}{69.70}\)
\(=7.\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)
\(=7.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(=7.\left(\frac{1}{10}-\frac{1}{70}\right)=7.\frac{3}{35}=\frac{3}{5}\)
\(A=7.\left(\frac{1}{10}-\frac{1}{70}\right)\)
\(=\frac{6}{70}\)
\(=\frac{3}{35}\)
\(\frac{4}{1\cdot3\cdot5}+\frac{4}{3\cdot5\cdot7}+\frac{4}{5\cdot7\cdot9}+\frac{4}{7\cdot9\cdot11}+\frac{4}{9\cdot11\cdot13}\)
\(=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{9.11}-\frac{1}{11.13}\)
\(=\frac{1}{1.3}-\frac{1}{11.13}\)
\(=\frac{1}{3}-\frac{1}{143}\)
\(=\frac{140}{429}\)
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+....+\frac{1}{97.100}=\frac{0,33.x}{2009}\)
\(\Leftrightarrow\frac{1}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{97}-\frac{1}{100}\right)=\frac{0,33.x}{2009}\)
\(\Leftrightarrow\frac{1}{3}\cdot\left(1-\frac{1}{100}\right)=\frac{0,33.x}{2009}\)
\(\Leftrightarrow\frac{1}{3}\cdot\frac{99}{100}=\frac{0,33.x}{2009}\)
\(\Leftrightarrow\frac{33}{100}=\frac{0,33.x}{2009}\)
\(\Leftrightarrow x=\frac{0,33\times100}{0,33}=100\)
A = \(\frac{3^2}{1\cdot4}+\frac{3^2}{4\cdot7}+\frac{3^2}{7\cdot10}+\frac{3^2}{10\cdot13}+\frac{3^2}{13\cdot16}+...+\frac{3^2}{97\cdot100}\)
A : 3 = \(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+\frac{3}{13\cdot16}+...+\frac{3}{97\cdot100}\)
A : 3 = \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+...+\frac{1}{97}-\frac{1}{100}\)
A : 3 = \(\frac{1}{1}-\frac{1}{100}\)
A : 3 = \(\frac{99}{100}\)
A = \(\frac{297}{100}\)
Ta có :
\(B=\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+\frac{5}{13.16}\)
\(\frac{3}{5}B=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}\)
\(\frac{3}{5}B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\)
\(\frac{3}{5}B=1-\frac{1}{16}\)
\(B=\frac{15}{16}:\frac{3}{5}\)
\(B=\frac{25}{16}\)
Ủng hộ mk nha !!! ^_^
\(B=\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+\frac{5}{13.16}\)
\(\frac{3}{5}B=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}\)
\(\frac{3}{5}B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\)
\(\frac{3}{5}B=1-\frac{1}{16}\)
\(B=\frac{15}{16}:\frac{3}{5}\)
\(B=\frac{25}{16}\)
a) \(C=\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{73.76}\)
\(C=1.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{73}-\frac{1}{76}\right)\)
\(C=1.\left(\frac{1}{4}-\frac{1}{76}\right)\)
\(C=1.\frac{9}{38}\)
\(C=\frac{9}{38}\)
b) \(D=\frac{5}{10.11}+\frac{5}{11.12}+\frac{5}{12.13}+...+\frac{5}{99.100}\)
\(D=5.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{99}+\frac{1}{100}\right)\)
\(D=5.\left(\frac{1}{10}-\frac{1}{100}\right)\)
\(D=5.\frac{9}{100}\)
\(D=\frac{99}{20}\)