Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^5-70x^4-70x^3-70x^2-70x+34\)
\(\Rightarrow A=x^5-\left(x-1\right)x^4-\left(x-1\right)x^3-\left(x-1\right)x^2-\left(x-1\right)x+34\)
\(A=x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x+34\)
\(A=71+34\)
\(A=105\)
Với x = 71 thì x -1 = 70
\(x^5-x^4\left(x-1\right)-x^3\left(x-1\right)-x^2\left(x-1\right)-x\left(x-1\right)+34\)
\(=x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x+34\)
\(=71+34=105\)
Vậy biểu thức trên không phụ thuộc vào biến x
\(A=x^5-70x^4-70x^3-70x^2-70x+34\)
\(=x^5-\left(71-1\right)x^4-\left(71-1\right)x^3-\left(71-1\right)x^2-\left(71-1\right)x+34\)
\(=x^5-\left(x-1\right)x^4-\left(x-1\right)x^3-\left(x-1\right)x^2-\left(x-1\right)x+34\)
\(=x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x+34\)
\(=x+34=71+34=105\)
a, \(A=\left(100+50\right)^2=22500\)
b, \(B=\left(127+73\right)^2=40000\)
c, \(C=-6x+25\)Thay x = 100 ta có :
\(C=-6.100+25=-600+25=-575\)
\(A=100^2+200.50+50^2\)
\(=100^2+2.100.5+50^2\)
\(=\left(100+50\right)^2=150^2\)
\(B=127^2+146.127+73^2\)
\(=127^2+2.73.127+73^2\)
\(=\left(127+73\right)^2=200^2\)
\(A=3x^2-5x+3=3(x^2-\frac{5}{3}x)+3\)
\(=3(x^2-\frac{5}{3}x+\frac{5^2}{6^2})+\frac{11}{12}=3(x-\frac{5}{6})^2+\frac{11}{12}\)
Vì \((x-\frac{5}{6})^2\geq 0, \forall x\Rightarrow A\geq 3.0+\frac{11}{12}=\frac{11}{12}\)
Vậy A(min)$=\frac{11}{12}$ khi $x=\frac{5}{6}$
\(B=2x^2+2x+1=2(x^2+x+\frac{1}{4})+\frac{1}{2}\)
\(=2(x+\frac{1}{2})^2+\frac{1}{2}\geq 2.0+\frac{1}{2}=\frac{1}{2}\)
Vậy \(B_{\min}=\frac{1}{2}\) tại \((x+\frac{1}{2})^2=0\Leftrightarrow x=\frac{-1}{2}\)
C)
\(C=2x^2+y^2+10x-2xy+27\)
\(=(x^2+10x+25)+(x^2+y^2-2xy)+2\)
\(=(x+5)^2+(x-y)^2+2\)
Vì \((x+5)^2\ge 0, (x-y)^2\geq 0\Rightarrow C\geq 0+0+2=2\)
Vậy \(C_{\min}=2\) tại \(\left\{\begin{matrix} (x+5)^2=0\\ (x-y)^2=0\end{matrix}\right.\Leftrightarrow x=y=-5\)
Bài 3: Nhẩm đc nghiện rồi thì dễ :D
b)Áp dụng hằng đẳng thức,pt trở thành:
\(x\left(x^2-25\right)-\left(x^3+1\right)=14\)
\(\Leftrightarrow x=-\frac{3}{5}\)
c) PT \(\Leftrightarrow\left(2x+1\right)^2=0\Leftrightarrow x=-\frac{1}{2}\) (hằng đẳng thức thôi:v)
d) \(PT\Leftrightarrow x^2+x-\left(5x+5\right)=0\)
\(\Leftrightarrow x\left(x+1\right)-5\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=5\end{matrix}\right.\)
Bài 2: Giải tượng trưng thôi nha. và em cũng ko biết em có tính sai chỗ nào ko nữa:v
a) + b) + c) em lười làm quá:( Thay vào máy tính cho nhanh:D
d) Gọi biểu thức trên là D.Thì:
\(D=\left[\left(99+1\right)^2+\left(97+1\right)^2+...+\left(1+1\right)^2\right]-99^2-97^2-...-3^2-1^2\)
\(=\left[\left(99+1\right)^2-99^2\right]+\left[\left(97+1\right)^2-97^2\right]+...+\left[\left(1+1\right)^2-1^2\right]\)
Áp dụng hằng đẳng thức số 3 (em ko nhớ rõ:v): a2 - b2 = (a - b)(a+b) ta được:
\(D=\left(99+1+99\right)+\left(97+1+97\right)+...+\left(1+1+1\right)\)
\(=2\left(99+97+...+1\right)+\left(1+1+...+1\right)\) (với 50 số 1 trong ngoặc thứ 2)
\(=2\left(99+97+...+1\right)+50\)
Xét tổng: \(99+97+...+1=\frac{\left(99+1\right).50}{2}=2500\)
Vậy D = 2. 2500 + 50 = 5050
P/s : lười làm nên đăng hình ảnh zậy , viết mỏi tay lắm ( em lùng ảnh cũ , ko phải bây h mới làm , có kí tên nên ko pải hàng fake )
\(a,x^2-3x=0\)
\(\Rightarrow x\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
- Thay \(x=0\) vào biểu thức A, ta được :
\(\frac{0-5}{0-4}=\frac{-5}{-4}=\frac{5}{4}\)
- Thay \(x=3\) vào biểu thức A, ta được :
\(\frac{3-5}{3-4}=\frac{-2}{-1}=2\)
\(b,B=\frac{x+5}{2x}-\frac{x-6}{5-x}-\frac{2x^2-2x-50}{2x^2-10x}\)
\(=\frac{x+5}{2x}+\frac{x-6}{x-5}+\frac{-\left(2x^2-2x-50\right)}{2x\left(x-5\right)}\)
\(=\frac{\left(x+5\right)\left(x-5\right)}{2x\left(x-5\right)}+\frac{2x\left(x-6\right)}{2x\left(x-5\right)}+\frac{-2x^2+2x+50}{2x\left(x-5\right)}\)
\(=\frac{x^2-25+2x^2-12x-2x^2+2x+50}{2x\left(x-5\right)}\)
\(=\frac{x^2-10x+25}{2x\left(x-5\right)}=\frac{\left(x-5\right)^2}{2x\left(x-5\right)}=\frac{x-5}{2x}\)
Đk : \(x\ne5;x\ne0;x\ne4\)
a) ta có:
\(x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(KTM\right)\\x=3\left(TM\right)\end{cases}}\)
Thay x= 3 vào biểu thức A , ta được :
\(A=\frac{3-5}{3-4}=\frac{-2}{-1}=2\)
vậy ..............
b) \(B=\frac{x+5}{2x}-\frac{x-6}{5-x}-\frac{2x^2-2x-50}{2x^2-10x}\)
\(B=\frac{x+5}{2x}+\frac{6-x}{x-5}-\frac{2x^2-2x-50}{2x\left(x-5\right)}\)
\(B=\frac{\left(x-5\right)\left(x+5\right)+2x\left(6-x\right)-2x^2+2x+50}{2x\left(x-5\right)}\)
\(B=\frac{x^2-25+12x-2x^2-2x^2+2x+50}{2x\left(x-5\right)}\)
\(B=\frac{-3x^2+25+14x}{2x\left(x-5\right)}\)
c) Ta có :
\(P=A.B\)
\(P=\frac{x-5}{x-4}.\frac{-3x^2+25+14x}{2x\left(x-5\right)}\)
\(P=\frac{-3x^2+25+14x}{2x\left(x-4\right)}\)
\(P=\frac{-3x^2+25+14x}{2x^2-8x}\)
Ta có
A = x 5 – 70 x 4 – 70 x 3 – 70 x 2 – 70 x + 29 = x 5 – 71 x 4 + x 4 – 71 x 3 + x 3 – 71 x 2 + x 2 – 71 x + x – 71 + 100 = x 4 ( x – 71 ) + x 3 ( x – 71 ) + x 2 ( x – 71 ) + x ( x – 71 ) + ( x – 71 ) + 100
Vì x = 71 nên x – 71 = 0, thay x – 71 = 0 vào A ta đươc
A = x 4 . 0 + x 3 . 0 + x 2 . 0 + x . 0 + 0 + 100 = 100
Vậy A = 100
Đáp án cần chọn là: C