Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{200}-1\right)\)
\(-A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{200}\right)\)
\(-A=\frac{1}{2}\cdot\frac{2}{3}\cdot...\cdot\frac{199}{200}\)
\(-A=\frac{1}{200}\)
\(A=\frac{-1}{200}>\frac{-1}{199}\)
a) \(A=4+4^2+4^3+...+4^{200}\)
\(4A=4^2+4^3+...+4^{201}\)
\(4A-A=3A=4^{201}-4\)
\(A=\frac{4^{201}-4}{3}\)
b) \(B=1+5+5^2+...+5^{2017}\)
\(5B=5+5^2+5^3+...+5^{2018}\)
\(5B-B=4B=5^{2018}-1\)
\(B=\frac{5^{2018}-1}{4}\)
c) \(C=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{500}}\)
\(3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{499}}\)
\(3C-C=2C=1-\frac{1}{3^{500}}=\frac{3^{500}-1}{3^{500}}\)
\(C=\frac{\left(\frac{3^{500}-1}{3^{500}}\right)}{2}\)
T_i_c_k cho mình nha,có j ko hiểu cứ hỏi mình nhé ^^
\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...............+\frac{1}{500}\left(1+2+3+.........+500\right)\)
\(=1+\frac{1}{2}\frac{3.2}{2}+\frac{1}{3}\frac{4.3}{2}+.............+\frac{1}{500}\frac{501.500}{2}\)
\(=\frac{1}{2}\left(2+3+............+501\right)\)
\(=\frac{1}{2}.251000\)
\(=125500\)