K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2018

\(A=\left(cos36-sin36\right)\left(cos37-sin38\right)\left(cos42-sin48\right)\)

\(\Leftrightarrow A=\left(cos36-sin36\right)\left(cos37-sin38\right)\left(cos42-sin\left(90-42\right)\right)\) \(\Leftrightarrow A=\left(cos36-sin36\right)\left(cos37-sin38\right)\left(cos42-cos42\right)=0\)

31 tháng 1 2023

\(Ta\) \(có:\) \(1+a^2=ab+bc+ca+a^2=b\left(a+c\right)+a\left(a+c\right)=\left(a+b\right)\left(c+a\right)\)

\(1+b^2=ab+bc+ca+b^2=\left(a+b\right)\left(b+c\right)\)

\(1+c^2=ab+bc+ca+c^2=\left(a+c\right)\left(c+b\right)\)

\(Khi\) \(đó:\) \(A=\dfrac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(c+b\right)}\)

\(\Rightarrow A=1\)

a: \(x^2-x-3m-2=0\)

\(\text{Δ}=\left(-1\right)^2-4\cdot1\cdot\left(-3m-2\right)\)

\(=1+12m+8=12m+9\)

Để phương trình có nghiệm kép thì Δ=0

=>12m+9=0

=>12m=-9

=>\(m=-\dfrac{3}{4}\)

Thay m=-3/4 vào phương trình, ta được:

\(x^2-x-3\cdot\dfrac{-3}{4}-2=0\)

=>\(x^2-x+\dfrac{1}{4}=0\)

=>\(\left(x-\dfrac{1}{2}\right)^2=0\)

=>\(x-\dfrac{1}{2}=0\)

=>\(x=\dfrac{1}{2}\)

b: Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-1\right)}{1}=1\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-3m-2}{1}=-3m-2\end{matrix}\right.\)

\(\left(x_1+x_2\right)^2-3x_1x_2\)

\(=1^2-3\left(-3m-2\right)\)

\(=1+9m+6=9m+7\)

c: \(\left(x_1+x_2\right)^2=1^2=1\)

d: \(\left(x_1\right)^2\cdot\left(x_2\right)^2=\left[x_1x_2\right]^2\)

\(=\left(-3m-2\right)^2\)

\(=9m^2+12m+4\)

30 tháng 9 2017

Nhiều quá làm 1 bài tiêu biểu thôi nhé:

a/ \(A=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)

\(=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)\left(ab+bc+ca+c^2\right)}\)

\(=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)\left(c+a\right)\left(b+c\right)\left(a+b\right)\left(c+a\right)\left(b+c\right)}=1\)

30 tháng 9 2017

2 bài còn lại y chang

AH
Akai Haruma
Giáo viên
12 tháng 5 2021

Lời giải:

Đặt biểu thức trên là $A$ thì:

\(A=\frac{1}{x+1}:\frac{x^2+3x+2-2}{(x-1)(x+1)(x+2)}=\frac{1}{x+1}:\frac{x(x+3)}{(x-1)(x+1)(x+2)}\)

\(=\frac{1}{x+1}.\frac{(x-1)(x+1)(x+2)}{x(x+3)}=\frac{(x-1)(x+2)}{x(x+3)}\)

16 tháng 3 2018

\(A=\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-x\right)\left(y-z\right)}+\frac{xy}{\left(z-x\right)\left(z-y\right)}\)

=> \(\left(-A\right)=\frac{yz}{\left(x-y\right)\left(z-x\right)}+\frac{xz}{\left(x-y\right)\left(y-z\right)}+\frac{xy}{\left(z-x\right)\left(y-z\right)}\)

<=> \(\left(-A\right)=\frac{yz\left(y-z\right)+xz\left(z-x\right)+xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=\frac{y^2z-yz^2+xz^2-x^2z+xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

<=> \(\left(-A\right)=\frac{z^2\left(x-y\right)-z\left(x^2-y^2\right)+xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)=> \(\left(-A\right)=\frac{\left(x-y\right)\left(z^2-zx-zy+xy\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=\frac{\left(x-y\right)\left[z\left(z-x\right)-y\left(z-x\right)\right]}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(\left(-A\right)=\frac{\left(x-y\right)\left(z-x\right)\left(z-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=-1\)

=> A = 1

Đáp số: A=1

26 tháng 6 2021

\(A=2.\left|\left(-3\right)\right|^3+2.\left(-2\right)^2-4\left|\left(-2\right)^3\right|\)

\(=54+8-32=30\)

\(B=\left|\sqrt{2}-2\right|+\left|\sqrt{2}-3\right|=2-\sqrt{2}+3-\sqrt{2}\)

\(=5-2\sqrt{2}\)

\(C=\left|3-\sqrt{3}\right|-\left|1+\sqrt{3}\right|=3-\sqrt{3}-1-\sqrt{3}\)

\(=2-2\sqrt{3}\)

\(D=\left|5+\sqrt{6}\right|-\left|\sqrt{6}-5\right|=5+\sqrt{6}-5+\sqrt{6}\)

\(=2\sqrt{6}\)

\(E=\sqrt{15^2}-\sqrt{5^2}=15-5=10\)

26 tháng 6 2021

`A=2sqrt{(-3)^6}+2sqrt{(-2)^4}-4sqrt{(-2)^6}=2|(-3)^3|+2|(-2)^2|-4|(-2)^3|=54+8-32=30` $\\$ `B=sqrt{(sqrt2-2)^2}+sqrt{(sqrt2-3)^2}=2-sqrt2+3-sqrt2=5-2sqrt2` $\\$ `C=sqrt{(3-sqrt3)^2}-sqrt{(1+sqrt3)^2}=3-sqrt3-sqrt3-1=2-2sqrt3` $\\$ `D=sqrt{(5+sqrt6)^2}-sqrt{(sqrt6-sqrt5)^2}=5+sqrt6-5+sqrt6=2sqrt6` $\\$ `E=sqrt{17^2-8^2}-sqrt{3^2+4^2}=sqrt{289-64}-sqrt{9+16}=sqrt(225)-sqrt{25}=15-5=10`