Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tan a =2/3
=> đặt sin a = 2x thì cos a = 3x
rồi làm tiếp còn cách khác thì k biết làm
Ta có: \(tan\alpha=3=\frac{sin\alpha}{cos\alpha}\Rightarrow sin\alpha=3cos\alpha\)
Suy ra: \(B=\frac{\left(sin\alpha-cos\alpha\right)\left(sin^2\alpha+cos^2\alpha+sin\alpha.cos\alpha\right)}{\left(sin\alpha+cos\alpha\right)\left(sin^2\alpha+cos^2\alpha-sin\alpha.cos\alpha\right)}\)
\(=\frac{2cos\alpha.\left(1+3cos^2\alpha\right)}{4cos\alpha.\left(1-3cos^2\alpha\right)}=\frac{1+3cos^2\alpha}{2.\left(1-3cos^2\alpha\right)}\)
sin3x=sin(2x+x)=sin2xcoxx+cox2xsinx
=2sinxcox^2 x+(1-2sin^2 x)sinx
=2sinxcox^2 x+ sinx-2sin^3 x
=sinx(2cos^2 x +1) - 2sin^3 x
=sinx(2-2sin^2 x +1) - 2sin^3 x
=3sinx - 4 sin^3 x.
cos3x=cox(2x+x)=cos2xcosx-sin2xsinx
=(2cos^2 x-1)cosx-2sin^2 xcosx
=2cos^3 x-cosx-(2-cos^2 x)cosx
=2cos^3 x -cosx-2coxx+2cos^3 x
=4cos^3 x - 3cosx.
=> tan 3a= sin3a/cos3a rồi ra
a: Ta có: \(\sin\widehat{B}=\dfrac{1}{3}\)
nên \(\dfrac{AC}{BC}=\dfrac{1}{3}\)
hay BC=3AC
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow8\cdot AC^2=16\)
\(\Leftrightarrow AC=\sqrt{2}cm\)
\(\Leftrightarrow BC=3\sqrt{2}cm\)
\(\Leftrightarrow AH=\dfrac{4\sqrt{2}}{3\sqrt{2}}=\dfrac{4}{3}cm\)
b: \(\cos\widehat{MAH}=\dfrac{AH}{AM}=\dfrac{4}{3}:\dfrac{3\sqrt{2}}{2}=\dfrac{4}{3}\cdot\dfrac{2}{3\sqrt{2}}=\dfrac{8\sqrt{2}}{18}=\dfrac{4\sqrt{2}}{9}\)
a) cos = 15/7
tan = 8/15
cot = 15/8
b) cos = 4/5
tan = 3/5
cot = 4/5
a) sin anpha = 2/3 => góc anpha = 42o
cos 42o = 0,743
tan 42o = 0,9
cot 42o = 1/tan 42o = 1/0,9 = 1,111
b) tan anpha + cot anpha = 3
<=> tan anpha + 1/tan anpha = 3
<=> tan2 anpha = 2
<=> tan anpha = \(\sqrt{2}\)
=> góc anpha = 55o
Ta có: a = sin 55o . cos 55o
<=> a = 0,469
VT = sin3a.cos^3a + sin^3a.cos3a
= sin3a.cosa.cos^2a + sin^2a.sina.cos3a
= 1/2.(sin2a + sin4a).cos^2a + 1/2.sin^2a.(sin(-2a) + sin4a)
= 1/2.(sin2a + sin4a).cos^2a + 1/2.sin^2a.(sin4a - sin2a)
= 1/2.sin2a.cos^2a + 1/2.sin4a.cos^2a + 1/2.sin^2a.sin4a - 1/2.sin^2a.sin2a
= 1/2.sin2a.(cos^2a - sin^2a) + 1/2.sin4a.(cos^2a + sin^2a)
= 1/2.sin2a.cos2a + 1/2.sin4a
= 1/4.sin4a + 1/2.sin4a
= 3/4.sin4a = VP
=> đpcm
P/s: Chỉ sợ you ko hiểu