K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2017

Ta có: \(2x< 3y< 0\Rightarrow x,y< 0\)

chia cả 2 vế cho \(y^2\)ta được: \(9.\left(\frac{x}{y}\right)^2-\frac{20.x}{y}+4=0\)

Giải pt bậc 2 ẩn x/y => \(\orbr{\begin{cases}\frac{x}{y}=2\\\frac{x}{y}=\frac{2}{9}\end{cases}}\)

Ta có: \(A=\frac{3x+2y}{3x-2y}=\frac{\frac{3.x}{y}+2}{\frac{3x}{y}-2}\)

Thay x/y vào tính được kết quả ....

27 tháng 7 2017

Từ \(9x^2+4y^2=20xy\Rightarrow9x^2-20xy+4y^2=0\)

\(\Leftrightarrow9x\left(x-2y\right)-2y\left(x-2y\right)=0\)\(\Leftrightarrow\left(x-2y\right)\left(9x-2y\right)=0\Leftrightarrow\orbr{\begin{cases}x=2y\\x=\frac{2}{9}y\end{cases}}\)

Với \(x=2y\Rightarrow A=\frac{3.2y+2y}{3.2y-2y}=\frac{8y}{4y}=2\)

Với \(x=\frac{2}{9}y\Rightarrow A=\frac{3.\frac{2}{9}y+2y}{3.\frac{2}{9}y-2y}=\frac{\frac{8}{3}y}{-\frac{4}{3}y}=-2\)

30 tháng 7 2017

Từ \(9x^2+4y^2=20xy\Rightarrow9x^2-20xy+4y^2=0\)

\(\Leftrightarrow9x\left(x-2y\right)-2y\left(x-2y\right)=0\Leftrightarrow\left(x-2y\right)\left(9x-2y\right)=0\Leftrightarrow\orbr{\begin{cases}x=2y\\x=\frac{2}{9}y\end{cases}}\)

Với \(x=2y\Rightarrow A=\frac{3\cdot2y+2y}{3\cdot2y-2y}=\frac{8y}{4y}=2\)

Với \(x=\frac{2}{9}y\Rightarrow A=\frac{3\cdot\frac{2}{9}y+2y}{3\cdot\frac{2}{9}y-2y}=\frac{\frac{8}{3}y}{-\frac{4}{3}y}=-2\)

14 tháng 7 2018

Ta có : b,  \((3x-2y)^2=9x^2-12xy+4y^2=20xy-12xy=8xy\)

\(\Rightarrow3x-2y=\sqrt{8xy}\)                             \((1)\)

\((3x+2y)^2=9x^2+12xy+4y^2=20xy+12xy=32xy\)

\(\Rightarrow3x+2y=\sqrt{32xy}\)                             \((2)\)

Từ \((1)\) và      \((2)\), suy ra :

\(\Rightarrow\frac{3x-2y}{3x+2y}=\frac{\sqrt{8xy}}{\sqrt{32xy}}=0,5\)

14 tháng 5 2017

bạn xem câu hỏi số 905663 nhé

8 tháng 5 2017

Đề kì vậy bạn. Sao vế trái không có \(y\) vậy?

28 tháng 9 2021

\(a,\Leftrightarrow\left\{{}\begin{matrix}5x+15y=-10\\5x-4y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}19y=-21\\5x-4y=11\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{21}{19}\\5x-4\left(-\dfrac{21}{19}\right)=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{25}{19}\\y=-\dfrac{21}{19}\end{matrix}\right.\)

\(c,\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\10x-5y=-40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\13x=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\\ d,\Leftrightarrow\left\{{}\begin{matrix}5x-10y=-30\\5x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-3y=5\\-7y=-35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=5\end{matrix}\right.\\ e,\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\2\left(x+y\right)+4\left(x-y\right)=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=6\\2\left(x+y\right)+3\cdot6=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=6\\x+y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{13}{2}\end{matrix}\right.\)

 

8 tháng 1 2021

1) \(\left\{{}\begin{matrix}3x-2y=4\\4x+2y=10\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}3x-2y=4\\7x=14\end{matrix}\right.< =>\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

2)\(\left\{{}\begin{matrix}2x+3y=5\\4x+6y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\4x=6y=10\end{matrix}\right.\)

=> Hệ có vô số nghiệm.

3)\(\left\{{}\begin{matrix}3x-4y=-2\\10x+4y=28\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}3x-4y=-2\\13x=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)

4)\(\left\{{}\begin{matrix}6x+15y=9\\6x-4y=28\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}6x+15y=9\\19y=19\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-1\end{matrix}\right.\)

6 tháng 6 2015

A = \(\frac{6}{3x}+\frac{6}{2y}+\frac{12}{3x+2y}=6.\left(\frac{1}{3x}+\frac{1}{2y}\right)+\frac{12}{3x+2y}\)

Áp dụng BĐT: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b};\)với a;b không âm

=> A \(\ge6.\frac{4}{3x+2y}+\frac{12}{3x+2y}=\frac{36}{3x+2y}\)

Mặt khác, (3x + 2y)2 = (3x.1 + 2y.1)2 \(\le\) (12 + 12).(9x2 + 4y2) = 2.18 = 36

=>  0< 3x + 2y \(\le\) 6 => \(\frac{36}{3x+2y}\ge\frac{36}{6}=6\)

=> A \(\ge\) 6.

Vậy Min A = 6 khi 3x = 2y => 18x2 = 18 => x = 1 (do x > 0) => y = 3/2