Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2015}-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)
\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2015}+\frac{1}{2016}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)
\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{1003}\right)\)
\(\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2016}\)
Đặt A=1-1/2+1/3-1/4+.......+1/2005-1/2006
=>A= (1+1/3+1/5+...+1/2005)-(1/2+1/4+1/6+.....+1/2006)
=>A=(1+1/2+1/3+...+1/2005)-2.(1/2+1/4+1/6+...+1/2006)
=>A=(1+1/2+1/3+....+1/2005)-(1+1/2+1/3+...+1/1003)
=>A=1/1004+1/1005+.....+1/2006
Vậy A=1/1004+1/1005+.....+1/2006 ( Điều phải chứng minh )
Đề của bạn sai rồi: Phải là B = \(\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\) chứ ?!
B=\(\frac{1}{1004.2006}+\frac{1}{1005.2005}+...+\frac{1}{2006.1004}\)
BÀI GIẢI
A=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}=\left(1+\frac{1}{2}+...+\frac{1}{2006}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1003}\right)\)
=\(\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\)
Lại có \(\frac{1}{3010}.B=\frac{1}{1004}+\frac{1}{2006}+\frac{1}{1005}+\frac{1}{2005}+...+\frac{1}{1004}=1505.\left(\frac{1}{1004}+...+\frac{1}{2006}\right)\)
Vậy A/B=1505. Từ bài toán này, chắc cx nghĩ ra cách làm rồi nhỉ
BẤM ĐÚNG CHO TUI
Mình mở rộng bài toán nhé, xong tự nghĩ cách giải . Đề mở rộng là:
Tính A/B biết \(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\)