Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(0.4\cdot\sqrt{0.25-\sqrt{\dfrac{1}{4}}}=0.4\cdot\sqrt{0.25-0.5}\)(đề này sai rồi bạn)
b: \(\dfrac{3}{2}+2\left(x-1\right)=-5\dfrac{1}{2}\)
\(\Leftrightarrow2\left(x-1\right)=\dfrac{-11}{2}-\dfrac{3}{2}=-7\)
\(\Leftrightarrow x-1=\dfrac{-7}{2}\)
hay \(x=-\dfrac{5}{2}\)
a: Ta có: \(\dfrac{1}{4}:x=3\dfrac{4}{5}:40\dfrac{8}{15}\)
\(\Leftrightarrow x=\dfrac{1}{4}\cdot\dfrac{\dfrac{608}{15}}{3+\dfrac{4}{5}}\)
\(\Leftrightarrow x=\dfrac{152}{15}:\dfrac{19}{5}=\dfrac{8}{3}\)
b: Ta có: \(\left(x+1\right):\dfrac{5}{6}=\dfrac{20}{3}\)
\(\Leftrightarrow x+1=\dfrac{50}{9}\)
hay \(x=\dfrac{41}{9}\)
c: Ta có: \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)
\(\Leftrightarrow x^2-1=63\)
\(\Leftrightarrow x^2=64\)
hay \(x\in\left\{8;-8\right\}\)
c. \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)
\(7.9=\left(x-1\right).\left(x+1\right)\)
\(63=x^2-1\)
\(x^2=63+1\)
\(x^2=64\)
\(x^2=8^2\)
\(x=8\)
\(a,2\dfrac{1}{2}-x+\dfrac{4}{5}=\dfrac{2}{3}-\left(-\dfrac{4}{7}\right)\\ \Rightarrow\dfrac{5}{2}-x+\dfrac{4}{5}=\dfrac{26}{21}\\ \Rightarrow\dfrac{5}{2}-x=\dfrac{46}{105}\\ \Rightarrow x=\dfrac{433}{210}\\ b,-\dfrac{4}{7}-x=\dfrac{3}{5}-2x\\ \Rightarrow2x-\dfrac{4}{7}-x=\dfrac{3}{5}\\ \Rightarrow2x-x=\dfrac{41}{35}\\ \Rightarrow x=\dfrac{41}{35}\\ c,\left(\dfrac{3}{8}-\dfrac{1}{5}\right)+\left(\dfrac{5}{8}-x\right)=\dfrac{1}{5}\\ \Rightarrow\dfrac{7}{40}+\dfrac{5}{8}-x=\dfrac{1}{5}\\ \Rightarrow\dfrac{4}{5}-x=\dfrac{1}{5}\\ \Rightarrow x=\dfrac{3}{5}.\)
a)
\(\dfrac{1}{2}{x^2}.\dfrac{6}{5}{x^3} = \dfrac{1}{2}.\dfrac{6}{5}.{x^2}.{x^3} = \dfrac{3}{5}{x^5}\);
b)
\(\begin{array}{l}{y^2}(\dfrac{5}{7}{y^3} - 2{y^2} + 0,25) = {y^2}.\dfrac{5}{7}{y^3} - {y^2}.2{y^2} + {y^2}.0,25)\\ = \dfrac{5}{7}{y^5} - 2{y^4} + 0,25{y^2}\end{array}\);
c)
\(\begin{array}{l}(2{x^2} + x + 4)({x^2} - x - 1) \\= 2{x^2}({x^2} - x - 1) + x({x^2} - x - 1) + 4({x^2} - x - 1)\\ = 2{x^4} - 2{x^3} - 2{x^2} + {x^3} - {x^2} - x + 4{x^2} - 4x - 4 \\= 2{x^4} - {x^3} + {x^2} - 5x - 4\end{array}\);
d)
\(\begin{array}{l}(3x - 4)(2x + 1) - (x - 2)(6x + 3) \\= 3x(2x + 1) - 4(2x + 1) - x(6x + 3) + 2(6x + 3)\\ = 6{x^2} + 3x - 8x - 4 - 6{x^2} - 3x + 12x + 6\\ = 4x + 2\end{array}\).
a) 1/20 - (x - 8/5) = 1/10
x - 8/5 = 1/20 - 1/10
x - 8/5 = -1/20
x = -1/20 + 8/5
x = 31/20
b) 7/4 - (x + 5/3) = -12/5
x + 5/3 = 7/4 + 12/5
x + 5/3 = 83/20
x = 83/20 - 5/3
x = 149/60
c) x - [17/2 - (-3/7 + 5/3)] = -1/3
x - (17/2 - 26/21) = -1/3
x - 305/42 = -1/3
x = -1/3 + 305/42
x = 97/14
\(a,\dfrac{-3}{4}x+1=\dfrac{5}{6}\\ \Rightarrow\dfrac{-3}{4}x=\dfrac{-1}{6}\\ \Rightarrow x=\dfrac{2}{9}\\ b,\left(2x-3\right)\left(x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x-3=0\\x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=5\end{matrix}\right.\\ c,\dfrac{1}{2}-\left|x+1\right|=0,25\\ \Rightarrow\left|x+1\right|=0,25\\ \Rightarrow\left[{}\begin{matrix}x+1=0,25\\x+1=-0,25\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-0,75\\x=-1,25\end{matrix}\right.\)
a: =>-3/4x=-1/6
hay x=2/9
b: =>2x-3=0 hoặc x-5=0
hay x=3/2 hoặc x=5
c: =>|x+1|=1/4
\(\Leftrightarrow x+1\in\left\{\dfrac{1}{4};-\dfrac{1}{4}\right\}\)
hay \(x\in\left\{-\dfrac{3}{4};-\dfrac{5}{4}\right\}\)
a.\(x-\dfrac{2}{3}=\dfrac{8}{7}\)
\(x=\dfrac{8}{7}+\dfrac{2}{3}\)
x=\(\dfrac{38}{21}\)
b.\(\left(x+\dfrac{1}{3}\right)=\dfrac{4}{25}
\)
x=\(\dfrac{4}{25}-\dfrac{1}{3}\)
x=\(-\dfrac{13}{75}\)
c.\(-\dfrac{2}{3}:x+\dfrac{5}{8}=-\dfrac{7}{12}\)
\(-\dfrac{2}{3}:x=-\dfrac{29}{24}\)
x=\(\dfrac{16}{29}\)
`#3107`
a)
\(\dfrac{11}{12}-\left(\dfrac{2}{5}+\dfrac{3}{4}x\right)=\dfrac{2}{3}?\\ \Rightarrow\dfrac{2}{5}+\dfrac{3}{4}x=\dfrac{11}{12}-\dfrac{2}{3}\\ \Rightarrow\dfrac{2}{5}+\dfrac{3}{4}x=\dfrac{1}{4}\\ \Rightarrow\dfrac{3}{4}x=\dfrac{1}{4}-\dfrac{2}{5}\\ \Rightarrow\dfrac{3}{4}x=-\dfrac{3}{20}\\ \Rightarrow x=-\dfrac{3}{20}\div\dfrac{3}{4}\\ \Rightarrow x=-\dfrac{1}{5}\)
Vậy, \(x=-\dfrac{1}{5}\)
b)
\(\dfrac{-2}{5}+\dfrac{5}{3}\cdot\left(\dfrac{3}{2}-\dfrac{4}{15}x\right)=\dfrac{-7}{6}\\ \Rightarrow\dfrac{5}{3}\cdot\left(\dfrac{3}{2}-\dfrac{4}{15}x\right)=\dfrac{-7}{6}-\dfrac{-2}{5}\\ \Rightarrow\dfrac{5}{3}\cdot\left(\dfrac{3}{2}-\dfrac{4}{15}x\right)=-\dfrac{23}{30}\\ \Rightarrow\dfrac{3}{2}-\dfrac{4}{15}x=-\dfrac{23}{30}\div\dfrac{5}{3}\\ \Rightarrow\dfrac{3}{2}-\dfrac{4}{15}x=-\dfrac{23}{50}\\ \Rightarrow\dfrac{4}{15}x=\dfrac{3}{2}-\left(-\dfrac{23}{50}\right)\\ \Rightarrow\dfrac{4}{15}x=\dfrac{49}{25}\\ \Rightarrow x=\dfrac{147}{20}\)
Vậy, \(x=\dfrac{147}{20}\)
c)
\(\dfrac{1}{2}+\dfrac{3}{4}x=\dfrac{1}{4}\\ \Rightarrow\dfrac{3}{4}x=\dfrac{1}{4}-\dfrac{1}{2}\\ \Rightarrow\dfrac{3}{4}x=-\dfrac{1}{4}\\ \Rightarrow x=-\dfrac{1}{4}\div\dfrac{3}{4}\\ \Rightarrow x=-\dfrac{1}{3}\)
Vậy, \(x=-\dfrac{1}{3}.\)
\(#Emyeu1aithatroi...\)
(2/5 + 3/4 . x)= 11/12 -2/3
(2/5 +3/4 . x)= 1/4
3/4 . x = 1/4 - 2/5
3/4 . x = -3/20
x = -3/20 : 3/4
x = -1/5
Vậy .....
\(\begin{array}{l}a)5{x^3} + {x^3} = (5 + 1){x^3} = 6{x^3}\\b)\dfrac{7}{4}{x^5} - \dfrac{3}{4}{x^5} = \left( {\dfrac{7}{4} - \dfrac{3}{4}} \right){x^5} = \dfrac{4}{4}{x^5} = {x^5}\\c)( - 0,25{x^2}).(8{x^3}) = ( - 0,25.8).({x^2}.{x^3}) = - 2.{x^5}\end{array}\)