K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2015

Ta có: A=1.2.3+2.3.4+…+98.99.100

=>A.4=1.2.3.4+2.3.4.4+…+98.99.100.4

=>A.4=1.2.3.(4-0)+2.3.4.(5-1)+…+98.99.100.(101-97)

=>A.4=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+…+98.99.100.101-97.98.99.100

=>A.4=98.99.100.101

=>A.4=97990200

=>A=97990200:4

=>A=24497550

11 tháng 10 2015

Michiel Girl Mít ướt bài lớp 7 đó, lm đi

11 tháng 2 2018

\(S=\left(\frac{3-1}{1.2.3}\right)+\left(\frac{4-2}{2.3.4}\right)+...+\left(\frac{2018-2016}{2016.2017.2018}\right)\)

\(S=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+..+\frac{1}{2016.2017}-\frac{1}{2017.2018}\right)\)

\(S=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2017.2018}\right)\)

Còn lại tự tính nha bn 

27 tháng 9 2015

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2013.2014.2015}=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2013.2014.2015}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2013.2014}-\frac{1}{2014.2015}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4058210}\right)=\frac{1}{2}.\frac{2029104}{4058210}=\frac{1014552}{4058210}\)

27 tháng 9 2015

bài thi cấp huyện của trường TH Quỳnh Bá

11 tháng 7 2017

B = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2015.2016.2017}\)
=) 2B = \(2.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2015.2016.2017}\right)\)
\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2015.2016.2017}\)
\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2015.2016}-\frac{1}{2016.2017}\)
\(\frac{1}{1.2}-\frac{1}{2016.2017}=\frac{1}{2}.\left(1-\frac{1}{1008.2017}\right)=\frac{1}{2}.\left(1-\frac{1}{2033136}\right)\)
\(\frac{1}{2}.\frac{2033135}{2033136}=\frac{1}{4066272}\)
=) B = \(\frac{1}{4066272}:2=\frac{1}{4066272}.\frac{1}{2}=\frac{1}{8132544}\)

11 tháng 7 2017

B = 1(1/1 - 1/2 - 1/3 + 1/2 - 1/3 - 1/4 + ...+ 1/2015 - 1/2016 - 1/2017)

B = 1( 1/1 - 1/2017)

B = 1.2016

B = 2016

Mà em nói nhỏ nghe nè,đây không phải là toán lớp 9 đâu,...mà là ......toán lớp 6 thôi !

20 tháng 10 2018

Lời giải: Sử dụng hằng đẳng thức \(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)  ta có:

Sn=\(\frac{1}{2}\left[\frac{1}{1\times2}-\frac{1}{2\times3}\right]+\frac{1}{2}\left[\frac{1}{2\times3}-\frac{1}{3\times4}\right]+...\)\(+\frac{1}{2}\left[\frac{1}{\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]\)

\(=\frac{1}{2}\left[\frac{1}{1\times2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]=\frac{n\left(n+3\right)}{4\left(n+1\right)\left(n+2\right)}\)

20 tháng 10 2018

\(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{n.\left(n+1\right).\left(n+2\right)}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{n.\left(n+1\right)}-\frac{1}{\left(n+1\right).\left(n+2\right)}\)

\(=\frac{1}{2}-\frac{1}{\left(n+1\right).\left(n+2\right)}\)

7 tháng 10 2017

ap dung bdt cauchy -schwarz ta co \(\left(x+y\right)^2\le\left(1^2+1^2\right)\left(x^2+y^2\right)\)

          \(\Rightarrow x^2+y^2\ge\frac{2^2}{2}=2\) dau = xay ra \(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{y}\\x+y=2\end{cases}\Leftrightarrow x=y=1}\)

10 tháng 10 2019

a)\(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}.\frac{1}{n+1}.\left(\frac{1}{n}-\frac{1}{n+2}\right)\)=\(\frac{1}{2}.\frac{1}{n\left(n+1\right)}-\frac{1}{2}.\frac{1}{\left(n+1\right)\left(n+2\right)}\)\(\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+1}\right)-\frac{1}{2}\left(\frac{1}{n+1}-\frac{1}{n+2}\right)\)

=> a = \(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{2}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{3}\right)\)+\(\frac{1}{2}\left(\frac{1}{2}-\frac{1}{3}\right)-\frac{1}{2}\left(\frac{1}{3}-\frac{1}{4}\right)\)+....+\(\frac{1}{2}\left(\frac{1}{2018}-\frac{1}{2019}\right)-\frac{1}{2}\left(\frac{1}{2019}-\frac{1}{2020}\right)\)=\(\frac{1}{2}\left(1-\frac{1}{2}\right)-\frac{1}{2}\left(\frac{1}{2019}-\frac{1}{2020}\right)\)=\(\frac{1}{4}\left(1-\frac{1}{2019.1010}\right)\)=\(\frac{2019.1010-1}{2.2019.2020}\)

b) tương tự \(\frac{1}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}=\left(\frac{1}{n}-\frac{1}{n+1}\right)\left(\frac{1}{n+2}-\frac{1}{n+3}\right)\)=\(\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+2}\right)-\left(\frac{1}{n+1}-\frac{1}{n+2}\right)\)-\(\frac{1}{3}\left(\frac{1}{n}-\frac{1}{n+3}\right)+\frac{1}{2}\left(\frac{1}{n+1}-\frac{1}{n+3}\right)\)=\(\frac{1}{6}\left(\frac{1}{n}-\frac{1}{n+1}\right)-\frac{1}{3}\left(\frac{1}{n+1}-\frac{1}{n+2}\right)\)+\(\frac{1}{6}\left(\frac{1}{n+2}-\frac{1}{n+3}\right)\)= M-P+N

Với n từ 1 đến 2017 thì

M= \(\frac{1}{6}\left(\frac{1}{1}-\frac{1}{2}\right)+\frac{1}{6}\left(\frac{1}{2}-\frac{1}{3}\right)+...\)+\(\frac{1}{6}\left(\frac{1}{2017}-\frac{1}{2018}\right)\)=\(\frac{1}{6}\left(1-\frac{1}{2018}\right)=\frac{2017}{6.2018}\)

N= \(\frac{1}{6}\left(\frac{1}{3}-\frac{1}{4}\right)+\frac{1}{6}\left(\frac{1}{4}-\frac{1}{5}\right)+...+\)\(\frac{1}{6}\left(\frac{1}{2019}-\frac{1}{2020}\right)=\)\(\frac{1}{6}\left(\frac{1}{3}-\frac{1}{2020}\right)=\frac{2017}{6.3.2020}\)

P= \(\frac{1}{3}\left(\frac{1}{2}-\frac{1}{3}\right)+\frac{1}{3}\left(\frac{1}{3}-\frac{1}{4}\right)+...+\)\(\frac{1}{3}\left(\frac{1}{2018}-\frac{1}{2019}\right)\)\(\frac{1}{3}\left(\frac{1}{2}-\frac{1}{2019}\right)=\frac{2017}{3.2.2019}\)

M+N-P = \(\frac{2017}{6}\left(\frac{1}{2018}+\frac{1}{3.2020}-\frac{1}{2019}\right)\)=\(\frac{2017}{6}.\left(\frac{1}{2018.2019}+\frac{1}{3.2020}\right)\)

=  \(\frac{2017\left(1010+1009.673\right)}{3.2018.2019.2020}\)

2 tháng 8 2017

\(S=\dfrac{4}{1.2.3}-\dfrac{1}{1.2.3}+\dfrac{6}{2.3.4}-\dfrac{1}{2.3.4}+...+\dfrac{4018}{2008.2009.2010}-\dfrac{1}{2008.2009.2010}\)

\(=\left(\dfrac{2}{1.3}+\dfrac{2}{2.4}+...+\dfrac{2}{2008.2010}\right)-\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{2008.2009.2010}\right)\)

\(=\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2007.2009}\right)+\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{2008.2010}\right)-\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{2008.2009.2010}\right)\)

\(=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2007}-\dfrac{1}{2009}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2008}-\dfrac{1}{2010}\right)-\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}-\dfrac{1}{2009.2010}\right)\)

\(=\left(1-\dfrac{1}{2009}\right)+\left(\dfrac{1}{2}-\dfrac{1}{2010}\right)-\left(\dfrac{1}{1.2}-\dfrac{1}{2009.2010}\right)\)

\(=1-\dfrac{1}{2009}-\dfrac{1}{2010}+\dfrac{1}{2009.2010}\)

\(=\dfrac{1}{2010}\left(\dfrac{1}{2009}-1\right)-\left(\dfrac{1}{2009}-1\right)\)

\(=\left(\dfrac{1}{2010}-1\right)\left(\dfrac{1}{2009}-1\right)=\dfrac{2009}{2010}.\dfrac{2008}{2009}=\dfrac{1004}{1005}\)