Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{8+2\sqrt{10+2\sqrt{5}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}}\)
\(A^2=8+2\sqrt{10+2\sqrt{5}+8-2\sqrt{10+2\sqrt{5}}+}2\sqrt{8+2\sqrt{10+2\sqrt{5}}}.\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)
\(A^2=16+2\left[64-4\left(10+2\sqrt{5}\right)\right]\)
\(A^2=16+128-8\left(10+2\sqrt{5}\right)\)
\(A^2=144-80-16\sqrt{5}\)
\(A^2=64-16\sqrt{5}\)
\(A^2=8+2\sqrt{10+2\sqrt{5}}+8-2.\sqrt{10+2\sqrt{5}}+2\sqrt{64-4\left(10+2\sqrt{5}\right)}\)
\(=16+2\sqrt{24-8\sqrt{5}}=16+2\sqrt{\left(2\sqrt{5}\right)^2-2.2\sqrt{5}+2^2}\)
\(=16+2\sqrt{\left(2\sqrt{5}-2\right)^2}=16+2\left(2\sqrt{5}-2\right)=12+4\sqrt{5}\)
\(=2+2.\sqrt{2}.\sqrt{10}+10\)
\(=\left(\sqrt{2}+\sqrt{10}\right)^2\)
=> \(A=\sqrt{2}+\sqrt{10}\)
\(a,Sửa:\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\\ =\dfrac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}+\dfrac{8\left(1+\sqrt{5}\right)}{-4}\\ =2\sqrt{5}-2-2\sqrt{5}=-2\\ b,=\dfrac{\sqrt{32}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}\\ =\dfrac{\sqrt{2}\left(4-\sqrt{6}\right)}{\sqrt{3}\left(\sqrt{6}-4\right)}-\dfrac{1}{\sqrt{6}}=\dfrac{\sqrt{6}}{3}-\dfrac{\sqrt{6}}{6}=\dfrac{2\sqrt{6}-\sqrt{6}}{6}=\dfrac{\sqrt{6}}{6}\)
Câu hỏi của Nguyen Phuc Duy - Toán lớp 9 - Học toán với OnlineMath
Bạn tham khảo link này!
a) \(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}\)
= \(\frac{\left(10+2\sqrt{10}\right)\left(1-\sqrt{5}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(1-\sqrt{5}\right)}+\frac{8\left(\sqrt{5}+\sqrt{2}\right)}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
= \(\frac{\left(10+2\sqrt{10}\right)\left(1-\sqrt{5}\right)+8\left(\sqrt{5}+\sqrt{2}\right)}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
= \(\frac{10-2\sqrt{5}+2\sqrt{10}-2\sqrt{2}}{\sqrt{5}+\sqrt{2}-5-\sqrt{10}}\)
= \(\frac{2\left(5-\sqrt{5}+\sqrt{10}-\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}-5-\sqrt{10}}\)
= -2
b); c); d) làm tương tự
a/\(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}=\frac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}=2\sqrt{5}+\frac{8}{1-\sqrt{5}}\)
\(=\frac{2\sqrt{5}-10+8}{1-\sqrt{5}}=\frac{-2\left(1-\sqrt{5}\right)}{1-\sqrt{5}}=-2\)
b/Đề sai
c/\(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=\frac{\sqrt{2}}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{\sqrt{2}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\frac{\sqrt{2}}{3+\sqrt{3}}+\frac{\sqrt{2}}{3-\sqrt{3}}=\sqrt{2}\left(\frac{3+\sqrt{3}+3-\sqrt{3}}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\right)=\frac{6\sqrt{2}}{6}=\sqrt{2}\)
d/ \(\frac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}=\frac{9+4\sqrt{5}-8\sqrt{5}}{2\sqrt{5}-4}=\frac{9-4\sqrt{5}}{2\left(\sqrt{5}-2\right)}=\frac{\left(\sqrt{5}-2\right)^2}{2\left(\sqrt{5}-2\right)}=\frac{\sqrt{5}-2}{2}\)
đề là rút gọn các biểu thức sau
nhờ mọi người giải giúp mình. cảm ơn mn nhìu
a: \(=\dfrac{\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\)
\(=\dfrac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\dfrac{3\sqrt{5}+5-3-\sqrt{5}}{2\sqrt{5}+2}\)
\(=\dfrac{2\sqrt{5}+2}{2\sqrt{5}+2}=1\)
b: \(=\dfrac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}-2-2\sqrt{5}\)
=2căn 5-2-2căn 5
=-2
d: \(=\dfrac{\sqrt{2}}{2+\sqrt{3}+1}+\dfrac{\sqrt{2}}{2-\sqrt{3}+1}\)
\(=\dfrac{\sqrt{2}}{3+\sqrt{3}}+\dfrac{\sqrt{2}}{3-\sqrt{3}}\)
\(=\dfrac{3\sqrt{2}-\sqrt{6}+3\sqrt{2}+\sqrt{6}}{6}=\sqrt{2}\)
\(A=\sqrt{8+2\sqrt{10+2\sqrt{5}}}-\sqrt{8-2\sqrt{10+2\sqrt{5}}}\) \(\Rightarrow A^2=16-2\sqrt{64-4\left(10+2\sqrt{5}\right)}\)
\(\Leftrightarrow A^2=16-2\sqrt{24-8\sqrt{5}}\)
\(\Leftrightarrow A^2=16-2\sqrt{20+4-2\times2\sqrt{5}\times2}\)
\(\Leftrightarrow A^2=16-2\sqrt{\left(2\sqrt{5}-2\right)^2}\)
\(\Leftrightarrow A^2=16-2\left(2\sqrt{5}-2\right)\)
\(\Leftrightarrow A^2=2\left(6-2\sqrt{5}\right)\)
\(\Leftrightarrow A^2=2\left(\sqrt{5}-1\right)^2\)
\(\Rightarrow A=\sqrt{2}.\left(\sqrt{5}-1\right)\)