Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)........\left(1-\frac{1}{2017}\right).\left(1-\frac{1}{2018}\right)\)
\(\Rightarrow B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.......\frac{2016}{2017}.\frac{2017}{2018}\)
Đởn giản hết sẽ còn là:
\(\Rightarrow B=\frac{1}{2018}\)
Mình thi rồi, mình biết là 15 nhưng mình cần CÁCH GIẢI !
* Xét số bị chia, ta có:
(2017 - 1) : 1 + 1 = 2017
(2020 - 4): 1 + 1 = 2017
Suy ra: Số hạng thứ hai của hiệu có số số hạng là: 2017
Suy ra: Ta có thể chia số 2017 thành 2017 số 1 để có:
2017 - 1/4 - 2/5 - 3/6 - 4/7 + …. - 2017/2020
= 1 - 1/4 + 1 - 2/5 + 1 - 3/6 + 1 - 4/7 + …. + 1 - 2017/2020
= 3/4 + 3/5 + 3/6 + 3/7 + …. + 3/2020 =
3 x (1/4 + 1/5 + 1/6 + 1/7 + …. 1/2020) (1)
* Xét số chia, ta có:
1/20 = 1/(4 x 5)
1/25 = 1/(5 x 5)
1/30 = 1/(6 x 5)
…
1/10100 = 1/(2020 x 5)
Suy ra:
1/20 + 1/25 + 1/30 + 1/35 + … + 1/10100
1/(4 x 5) + 1/25 + 1/30 + 1/35 + … + 1/(2020 x5 )
= 1/5 x (1/4 + 1/5 + 1/6 + 1/7 + …. + 1/2020) (2)
Ta thấy số bị chia (1) và số chia (2) có thừa số giống nhau là: (1/4 + 1/5 + 1/6 + 1/7 + …. 1/2020)
Suy ra: B = 3 : 1/5 = 15
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+\frac{1}{1+2+3+4+5}\)
\(=\frac{1}{1+2}\times\left(1+\frac{1}{1+2+3}\div\frac{1}{1+2}+\frac{1}{1+2+3+4}\div\frac{1}{1+2}+\frac{1}{1+2+3+4+5}\div\frac{1}{1+2}\right)\)
\(=\frac{1}{1+2}\times\left(1+\frac{1}{2}+\frac{3}{10}+\frac{1}{5}\right)\)
\(=\frac{1}{1+2}\times2\)
\(=\frac{2}{3}\)
Đặt phân thức trên là D
=> D=(1+1+1+1+...+1+2013/2+2012/3+...+2/2013+1/2014)/(1/2+1/3+1/4+...+1/2014)
=> D=(1+2013/2+1+2012/3+1+2011/4+...+1+2/2013+1+1/2014+1)/(1/2+1/3+1/4+1/5+...+1/2014)
=> D=(2015/2+2015/3+2015/4+...+2015/2013+2015/2014+1)/(1/2+1/3+1/4+...+1/2014)
=> D=[2015*(1/2+1/3+1/4+1/5+....+1/2014)]/(1/2+1/3+1/4+1/5+...+1/2014)
=> D=2015