K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 1 2023

Lời giải:

Đặt $a+b+c=x; ab+bc+ac=y$. Khi đó:
\(A=\frac{(x^2-2y)x^2+y^2}{x^2-y}=\frac{(x^2-y)x^2+y^2-x^2y}{x^2-y}\)

\(=\frac{(x^2-y)x^2-y(x^2-y)}{x^2-y}=\frac{(x^2-y)(x^2-y)}{x^2-y}=x^2-y\)

$=(a+b+c)^2-(ab+bc+ac)=a^2+b^2+c^2+ab+bc+ac$

NV
21 tháng 1

Phân thức có nghĩa khi a;b;c không đồng thời bằng 0

Khi đó:

\(\dfrac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2+2ab+2bc+2ca\right)+\left(ab+bc+ca\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)

\(=\dfrac{\left(a^2+b^2+c^2\right)^2+2\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)+\left(ab+bc+ca\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)

\(=\dfrac{\left(a^2+b^2+c^2+ab+bc+ca\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)

\(=a^2+b^2+c^2+ab+bc+ca\)

14 tháng 5 2017

\(A=\dfrac{\left(a-b\right)^2}{ab}+\dfrac{\left(b-c\right)^2}{bc}+\dfrac{\left(c-a\right)^2}{ca}\)

\(B=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

..................................

\(A=\dfrac{a^2+b^2-2ab}{ab}+\dfrac{b^2-2ab+c^2}{bc}+c^2+a^2-\dfrac{2ca}{ca}\)

\(A=\left(\dfrac{a}{b}+\dfrac{b}{a}-2\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}-2\right)+\left(\dfrac{c}{a}+\dfrac{a}{c}-2\right)=\dfrac{\left(b+c\right)}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}-6\)

\(A=\left[\dfrac{\left(b+c\right)}{a}+1\right]+\left[\dfrac{\left(a+c\right)}{b}+1\right]+\left[\dfrac{\left(a+b\right)}{c}+1\right]-9\)

\(A=\dfrac{\left(a+b+c\right)}{a}+\dfrac{\left(a+b+c\right)}{b}+\left[\dfrac{\left(a+b+c\right)}{c}\right]-9\)

\(A=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)-9\)

Ket luan

\(A\ne B\) => đề sai--> hoặc mình công trừ sai

16 tháng 5 2017

bạn đúng bạn đúng là mình chép sai à cảm ơn nhiều

19 tháng 8 2018

Nhân khai triển tử và mẫu của B, thấy ab + bc + ca thì thay bằng 1

7 tháng 1 2019

\((\dfrac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\dfrac{1}{\left(c-a\right)\left(b^2+ba-c^2-ca\right)}+\dfrac{1}{\left(a-b\right)\left(c^2+cb-a^2-ab\right)}=0 \)

\(\Leftrightarrow\dfrac{1}{\left(b-c\right)\left[\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\right]}+\dfrac{1}{\left(c-a\right)\left[\left(b-c\right)\left(b+c\right)+a\left(b-c\right)\right]}+\dfrac{1}{\left(a-b\right)\left[\left(c-a\right)\left(c+a\right)+b\left(c-a\right)\right]}=0\)

\(\Leftrightarrow\dfrac{1}{\left(b-c\right)\left(a-b\right)\left(a+b+c\right)}+\dfrac{1}{\left(c-a\right)\left(b-c\right)\left(a+b+c\right)}+\dfrac{1}{\left(a-b\right)\left(c-a\right)\left(a+b+c\right)}=0\)

\(\Leftrightarrow\dfrac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}=0\)

\(\Leftrightarrow\dfrac{0}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}=0\)(t/m)

Suy ra ta được Đt cần chứng minh.

Chúc bạn học tốt với hoc24 nhahaha

AH
Akai Haruma
Giáo viên
7 tháng 1 2019

Lời giải:

Ta có:

\(\frac{1}{(b-c)(a^2+ac-b^2-bc)}+\frac{1}{(c-a)(b^2+bc-c^2-ca)}+\frac{1}{(a-b)(c^2+cb-a^2-ab)}\)

\(=\frac{1}{(b-c)[(a^2-b^2)+(ac-bc)]}+\frac{1}{(c-a)[(b^2-c^2)+(ba-ca)]}+\frac{1}{(a-b)[(c^2-a^2)+(cb-ab)]}\)

\(=\frac{1}{(b-c)[(a-b)(a+b)+c(a-b)]}+\frac{1}{(c-a)[(b-c)(b+c)+a(b-c)]}+\frac{1}{(a-b)[(c-a)(c+a)+b(c-a)]}\)

\(=\frac{1}{(b-c)(a-b)(a+b+c)}+\frac{1}{(c-a)(b-c)(b+c+a)}+\frac{1}{(a-b)(c-a)(c+a+b)}\)

\(=\frac{(c-a)+(a-b)+(b-c)}{(a-b)(b-c)(c-a)(a+b+c)}=\frac{0}{(a-b)(b-c)(c-a)(a+b+c)}=0\)

Ta có đpcm.

NV
9 tháng 3 2023

\(a^2+b^2+c^2\ge ab+bc+ca=2\)

Áp dụng BĐT C-S:

\(P\ge\dfrac{\left(a+b+c\right)^2}{3-\left(a^2+b^2+c^2\right)}=\dfrac{a^2+b^2+c^2+4}{3-\left(a^2+b^2+c^2\right)}\)

Đặt \(a^2+b^2+c^2=x\)

Ta cần c/m: \(\dfrac{x+4}{3-x}\ge6\Leftrightarrow x+4\ge18-6x\)

\(\Leftrightarrow x\ge2\) (đúng)

Dấu = xảy ra khi \(a=b=c=\pm\sqrt{\dfrac{2}{3}}\)

17 tháng 9 2023

Ta có: \(a^2+1=a^2+ab+bc+ca=\left(a+b\right)\left(c+a\right)\)

Tương tự: \(\left\{{}\begin{matrix}b^2+1=\left(a+b\right)\left(b+c\right)\\c^2+1=\left(c+a\right)\left(b+c\right)\end{matrix}\right.\)

=> \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

Mặt khác: \(a+b+c-abc=a\left(1-bc\right)+b+c\)

                \(=a\left(ab+ca\right)+b+c\)     (Vì ab+bc+ca=1)

               \(=\left(a^2+1\right)\left(b+c\right)\)

               \(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)    (Vì \(a^2+1=\left(a+b\right)\left(c+a\right)\))

\(T=1\)

19 tháng 4 2018

I don't no

Tui lớp 6

Ko lớp 8 , kém xa lớp 8

Chờ 2 năm nữa

19 tháng 4 2018

bạn khai triển hằng đẳng thức rồi thay số vào

sau đó đơn giản là xong