K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 1 2019

Lời giải:

\(A=\frac{2}{11.15}+\frac{2}{15.19}+\frac{2}{19.23}+...+\frac{2}{51.55}\)

\(\Rightarrow 2A=\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+...+\frac{4}{51.55}\)

\(=\frac{15-11}{11.15}+\frac{19-15}{15.19}+\frac{23-19}{19.23}+....+\frac{55-51}{51.55}\)

\(=\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+...+\frac{1}{51}-\frac{1}{55}\)

\(=\frac{1}{11}-\frac{1}{55}=\frac{4}{55}\)

\(\Rightarrow A=\frac{2}{55}\)

\(A=\dfrac{-5}{3}\cdot\dfrac{11}{2}\cdot\dfrac{4}{3}=\dfrac{-20\cdot11}{2\cdot9}=\dfrac{-110}{9}\)

\(B=\dfrac{2}{4}\left(\dfrac{4}{11\cdot15}+\dfrac{4}{15\cdot19}+...+\dfrac{4}{51\cdot55}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{11}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{19}+...+\dfrac{1}{51}-\dfrac{1}{55}\right)\)

=1/2*4/55

=2/55

8 tháng 9 2018

A= \(\dfrac{1}{7.15}+\dfrac{2}{285}+\dfrac{2}{437}+\dfrac{2}{51.55}\)

A= \(\dfrac{1}{105}+\dfrac{2}{285}+\dfrac{2}{437}+\dfrac{2}{2805}\)

A=\(\dfrac{9859}{451605}\)

6 tháng 2 2016

\(A=\frac{1}{2}.\left(\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+...+\frac{4}{51.55}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+...+\frac{1}{51}-\frac{1}{55}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{1}{2}.\frac{4}{55}=\frac{2}{55}\)

6 tháng 2 2016

\(\Rightarrow A=\frac{2}{4}\left(\frac{1}{11.15}+\frac{1}{15.19}+\frac{1}{19.23}+.....+\frac{1}{51.55}\right)\)

\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+...+\frac{1}{51}-\frac{1}{55}\right)\)

\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{1}{2}.\frac{4}{55}=\frac{2}{55}\)

\(VậyA=\frac{2}{55}\)

7 tháng 8 2018

\(\dfrac{4}{3.7}+\dfrac{4}{7.11}+...+\dfrac{4}{23.27}\)

= \(4.\left(\text{​​}\text{​​}\text{​​}\text{​​}\text{​​}\text{​​}\dfrac{4}{3.7}+\dfrac{4}{7.11}+...+\dfrac{4}{23.27}\right)\)

=\(1.\left(\dfrac{1}{3.7}+\dfrac{1}{7.11}+...+\dfrac{1}{23.27}\right)\)

= \(1.\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{23}-\dfrac{1}{27}\right)\)

=\(1.\left(\dfrac{1}{3}-\dfrac{1}{27}\right)\)

=\(1.\left(\dfrac{9}{27}-\dfrac{1}{27}\right)\)

= \(1.\dfrac{8}{27}\)

= \(\dfrac{8}{27}\)

20 tháng 3 2020

Bạn tham khảo bài làm của mình nhé !!

\(A=\frac{2}{11.15}+\frac{2}{15.19}+\frac{2}{19.23}...+\frac{2}{51.55}\)

\(\Leftrightarrow2A=\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+...+\frac{4}{51.55}\)

\(\Leftrightarrow2A=\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+...+\frac{1}{51}-\frac{1}{55}\)

\(\Leftrightarrow2A=\frac{1}{11}-\frac{1}{55}\)

\(\Leftrightarrow2A=\frac{4}{55}\)

\(\Leftrightarrow A=\frac{4}{110}\)

20 tháng 3 2020

thank nhưng tui làm được rồi

DD
10 tháng 12 2021

a) \(A=\frac{2}{11.15}+\frac{2}{15.19}+...+\frac{2}{51.55}\)

\(=\frac{1}{2}\left(\frac{4}{11.15}+\frac{4}{15.19}+...+\frac{4}{51.55}\right)\)

\(=\frac{1}{2}\left(\frac{15-11}{11.15}+\frac{19-15}{15.19}+...+\frac{55-51}{51.55}\right)\)

\(=\frac{1}{2}\left(\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+...+\frac{1}{51}-\frac{1}{55}\right)\)

\(=\frac{1}{2}\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{2}{55}\)

b) \(\overline{abcabc}=\overline{abc}.1001=\overline{abc}.7.11.13\)suy ra đpcm. 

10 tháng 12 2021

\(\overline{abcabc}=1001.\overline{abc}=7.11.13.\overline{abc}\)

7, 11, 13 là các số nguyên tố

7 tháng 9 2018

=\(1\left(\frac{1}{14.15}+\frac{1}{15.19}+......+\frac{1}{51.55}\right)\)

=\(1\left(\frac{1}{14}-\frac{1}{15}\right)+\left(\frac{1}{15}-\frac{1}{19}\right).....+\left(\frac{1}{51}-\frac{1}{55}\right)\)

=\(1\left(\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}....+\frac{1}{51}-\frac{1}{55}\right)\)

=\(1\left(\frac{1}{14}-\frac{1}{55}\right)\)

=\(1.\frac{41}{770}\)

=\(\frac{41}{770}\)