K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2018

Ta có : 

\(A=\frac{3^9-2^3.3^7+2^{10}.3^2-2^{13}}{3^{10}-2^2.3^7+2^{10}.3^3-2^{12}}\)

\(A=\frac{3^7\left(3^2-2^3\right)+2^{10}\left(3^2-2^3\right)}{3^7\left(3^3-2^2\right)+2^{10}\left(3^3-2^2\right)}\)

\(A=\frac{\left(3^2-2^3\right)\left(3^7+2^{10}\right)}{\left(3^3-2^2\right)\left(3^7+2^{10}\right)}\)

\(A=\frac{3^2-2^3}{3^3-2^2}\)

\(A=\frac{9-8}{27-4}\)

\(A=\frac{1}{23}\)

Vậy \(A=\frac{1}{23}\)

Chúc bạn học tốt ~ 

20 tháng 4 2018

\(B=\frac{3^9-2^3\cdot3^7+2^{10}\cdot3^2-2^{13}}{3^{10}-2^2\cdot3^7+2^{10}\cdot3^3-2^{12}}\)

\(B=\frac{1-2\cdot1+1\cdot1-2}{3-1\cdot1+1\cdot3-1}\)

\(B=\frac{1-2+1-2}{3-1+3-1}\)

\(B=\frac{-1+\left(-1\right)}{2+2}\)

\(B=\frac{-2}{4}\)

\(\Rightarrow B=\frac{-1}{2}\)

20 tháng 7 2019

mk doan la` de sai, sua: \(\frac{3^9-2^3.3^7+2^{10}.3^2-2^{13}}{3^{10}-2^2.3^7+2^{10}.3^3-2^{12}}\)

\(=\frac{3^7.\left(3^2-2^3\right)+2^{10}.\left(3^2-2^3\right)}{3^7.\left(3^3-2^2\right)+2^{10}.\left(3^3-2^2\right)}=\frac{3^7+2^{10}}{\left(3^7+2^{10}\right).24}=\frac{1}{24}\)

30 tháng 9

bài1  

a) \(\dfrac{7}{6}-\dfrac{13}{12}+\dfrac{3}{4}\) 

=\(\dfrac{14}{12}-\dfrac{13}{12}+\dfrac{9}{12}\) 

=\(\dfrac{1}{12}+\dfrac{9}{12}\) 

=\(\dfrac{10}{12}=\dfrac{5}{6}\)

30 tháng 9

bài 1 

b)\(1\dfrac{1}{2}.(\dfrac{-4}{5})\) + \(\dfrac{3}{10}\) 

\(\dfrac{3}{2}.\left(-\dfrac{4}{5}\right)+\dfrac{3}{10}\) 

\(-\dfrac{6}{5}+\dfrac{3}{10}\) 

=\(-\dfrac{12}{10}+\dfrac{3}{10}\) 

=\(-\dfrac{9}{10}\) 

19 tháng 7 2017

umk 

Cách làm

1 là ko bít

2 là bí

3 là ế

20 tháng 2 2018

Nhìu vậy

29 tháng 10 2017

\(A=\dfrac{12^{15}\cdot3^4-4^5\cdot3^9}{27^3\cdot2^{10}-32^3\cdot3^9}\\ =\dfrac{\left(2^2\cdot3\right)^{15}\cdot3^4-\left(2^2\right)^5\cdot3^9}{\left(3^3\right)^3\cdot2^{10}-\left(2^5\right)^3\cdot3^9}\\ =\dfrac{2^{30}\cdot3^{15}\cdot3^4-2^{10}\cdot3^9}{3^9\cdot2^{10}-2^{15}\cdot3^9}\\ =\dfrac{3^9\cdot2^{10}\left(2^{20}\cdot3^{10}\right)}{3^9\cdot2^{10}\left(1-2^5\right)}\\ =\dfrac{\left(2^2\right)^{10}\cdot3^{10}}{1-32}\\ =\dfrac{\left(2^2\cdot3\right)^{10}}{-31}\\ =\dfrac{-12^{10}}{31}\)

\(B=\dfrac{3}{1^2\cdot2^2}+\dfrac{5}{2^2\cdot3^2}+...+\dfrac{99}{49^2\cdot50^2}\\ =\dfrac{2^2-1^2}{1^2\cdot2^2}+\dfrac{3^2-2^2}{2^2\cdot3^2}+...+\dfrac{50^2-49^2}{49^2\cdot50^2}\\ =\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{49^2}-\dfrac{1}{50^2}\\ =1-\dfrac{1}{2500}\\ =\dfrac{2499}{2500}\)

25 tháng 5 2022

\(A=\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)

\(=\dfrac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\dfrac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.2^3.7^3}\)

\(=\dfrac{2^{12}.3^4.\left(3-1\right)}{2^{12}.3^5.\left(3+1\right)}-\dfrac{5^{10}.7^3.\left(1-7\right)}{5^9.7^3.\left(1+2^3\right)}\)

\(=\dfrac{2^{12}.3^4.2}{2^{12}.3^5.4}-\dfrac{5^{10}.7^3.\left(-6\right)}{5^9.7^3.9}\)

\(=\dfrac{1}{6}-\dfrac{-10}{3}\)

\(=\dfrac{7}{2}\)

25 tháng 5 2022

hack não qué