Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
A x 3 = 99x100x101 A = 99x100x101 : 3 A = 333300 tích cho mình với, ko chat àh
a) Cách 1 : Cách 2
1 + 3 +5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 1 + 3 +5 + 7 + 9 + 11 + 13 + 15 + 17 + 19
=(1 + 19) + (3 + 17) +.... + (9 + 11) Áp dụng công thức tính dãy số ta có :
= 20 + 20 + ... + 20 \(\frac{\left[\left(19-1\right):2+1\right].\left(19+1\right)}{2}=\frac{10.20}{2}=10.10=100\)
= 20 x 5 = 100
b) giống bài a nhưng cách 1 làm dài lắm , mình sẽ làm cách 2
áp dụng công thức tính dãy số ta có:
\(\frac{\left[\left(200-4\right):4+1\right].\left(200+4\right)}{2}=\frac{50.204}{2}=50.102=5100\)
a)
\(=\dfrac{13}{5}+\dfrac{7}{5}\cdot\dfrac{7}{2}\)
\(=\dfrac{13}{5}+\dfrac{49}{10}\\ =\dfrac{26}{10}+\dfrac{49}{10}\\ =\dfrac{15}{2}\)
b)
\(=\dfrac{52}{4}-\dfrac{11}{3}:\dfrac{7}{6}\)
\(=\dfrac{52}{4}-\dfrac{22}{7}\\ =\dfrac{69}{7}\)
a) $2\dfrac35 + 1\dfrac25 . 3\dfrac12$
$= \dfrac{13}5 + \dfrac75.\dfrac72$
$= \dfrac{26}{10} + \dfrac{49}{10}$
$=\dfrac{15}2$.
b) $4\dfrac34 - 3\dfrac23 : 1\dfrac16$
$= \dfrac{19}4 - \dfrac{11}3 : \dfrac76$
$= \dfrac{19}4 - \dfrac{11}3 . \dfrac67$
$= \dfrac{19}4 - \dfrac{22}7$
$= \dfrac{45}{28}$.
S = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9
Số các số hạng của tổng \(S\)là :
\(\left(9-1\right)\div1+1=9\)( số hạng )
Tổng của dãy số \(S\)là :
\(\frac{\left(9+1\right).9}{2}=45\)
Đ/S: 45
M = 1 + 2 + 3 + 4 + 5 + ... + 99 + 100 + 101
Số các số hạng của tổng \(M\)là :
\(\left(101-1\right)\div1+1=101\)
Tổng của dãy số \(M\)là :
\(\frac{\left(101+1\right).101}{2}=5151\)
Đ/S : 5151
Số số hạng của dãy trên là :
(9 - 1) : 1 + 1 = 9 (số)
Tổng là :
(9 + 1) x 9 : 2 = 45
\(\frac{A}{4}=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{99x100}\)
\(\frac{A}{4}=\frac{2-1}{1x2}+\frac{3-2}{2x3}+\frac{4-3}{3x4}+...+\frac{100-99}{99x100}\)
\(\frac{A}{4}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\frac{A}{4}=1-\frac{1}{100}=\frac{99}{100}=>A=\frac{4x99}{100}=\frac{99}{25}\)
cảm ơn bạn nhiều