Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x-7\right)^{2009}=\left(3x-7\right)^{2007}\)
\(\Leftrightarrow\left(3x-7\right)^{2009}-\left(3x-7\right)^{2007}=0\)
\(\left(3x-7\right)^{2007}.\left[\left(3x-7\right)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(3x-7\right)^{2007}=0\\\left(3x-7\right)^2=1\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{3}\\\left(3x-7\right)=\pm1\end{cases}}}\)
=> \(x=\frac{7}{3},x=2,x=\frac{8}{3}\)
Vậy ...
2/\(\frac{5^{102}.9^{1009}}{3^{2018}.25^{50}}=\frac{5^{100+2}.3^{2.1009}}{3^{2018}.5^{2.50}}=\frac{5^{100}.5^2.3^{2018}}{3^{2018}.5^{100}}=5^2=25\)
Ta có: \(P=\frac{6^{2017}.4^{2018}.75^{1009}}{2^{4035}.3^{3025}.10^{2018}}=\frac{\left(2.3\right)^{2017}.\left(2^2\right)^{2018}.\left(5.5.3\right)^{1009}}{2^{4035}.3^{3025}.\left(2.5\right)^{2018}}\)
\(=\frac{2^{2017}.3^{2017}.2^{4036}.5^{2018}.3^{1009}}{2^{4035}.3^{3025}.2^{2018}.5^{2018}}=\frac{2^{6053}.3^{3026}.5^{2018}}{2^{6053}.3^{3025}.5^{2018}}=3\)
Vậy P=3 <=> A. P=3
a: \(0.2=\dfrac{2}{10}\)
10>7
=>\(\dfrac{2}{10}< \dfrac{2}{7}\)
=>\(\dfrac{2}{7}>0.2\)
b: \(-\dfrac{1^5}{6}=\dfrac{-1}{6}=\dfrac{-3}{18}\)
\(\dfrac{8}{-9}=-\dfrac{16}{18}\)
mà -3>-16
nên \(-\dfrac{1^5}{6}>\dfrac{8}{-9}\)
c: \(\dfrac{2017}{2016}>1\)
\(1>\dfrac{2017}{2018}\)
Do đó: \(\dfrac{2017}{2016}>\dfrac{2017}{2018}\)
d: \(-\dfrac{249}{333}=\dfrac{-249:3}{333:3}=\dfrac{-83}{111}\)
e: \(\dfrac{5^1}{3}=\dfrac{5}{3}=\dfrac{15}{9}\)
\(\dfrac{4^8}{9}=\dfrac{65536}{9}\)
mà 15<65536
nên \(\dfrac{5^1}{3}< \dfrac{4^8}{9}\)
f: 13,589<13,612
Ta có : \(2018.\left(\frac{1}{2017}-\frac{2019}{1009}\right)-2019.\left(\frac{1}{2017}-2\right)=\frac{2018}{2017}-2019.2-\frac{2019}{2017}+2019.2\)
\(=\frac{2018}{2017}-\frac{2019}{2017}=-\frac{1}{2017}\)
\(2018.\left(\frac{1}{2017}-\frac{2019}{1009}\right)-2019.\left(\frac{1}{2017}-2\right)\)
\(=\frac{2018}{2017}-2018.\frac{2019}{1009}-\frac{2019}{2017}+2019.2\)
\(=\frac{2018}{2017}-2.2019-\frac{2019}{2017}+2.2019\)
\(=\frac{2018}{2017}-\frac{2019}{2017}=-\frac{1}{2017}\)
\(\dfrac{5^{102}\cdot9^{1009}}{3^{2018}\cdot25^{50}}\)
\(=\dfrac{5^{102}\cdot\left(3^2\right)^{1009}}{3^{2018}\cdot\left(5^2\right)^{50}}\)
\(=\dfrac{5^{102}\cdot3^{2018}}{3^{2018}\cdot5^{100}}\)
\(=\dfrac{5^2\cdot1}{1\cdot1}\)
\(=25\)
1: so sánh 2016/2017+2017/2018
vì 2016/2017 > 1/2017 >1/2018 =
> 2016/2017+2017/2018 >1/2018+2017/2018=1
vậy .....