Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a,`
`P(x)=5x^3+3-3x^2+x^4-2x-2+2x^2+x`
`P(x)=x^4+5x^3+(-3x^2+2x^2)+(-2x+x)+(3-2)`
`P(x)=x^4+5x^3-x^2-x+1`
`Q(x)=2x^4+x^2+2x+2-3x^2-5x+2x^3-x^4`
`Q(x)=(2x^4-x^4)+2x^3+(x^2-3x^2)+(2x-5x)+2`
`Q(x)=x^4+2x^3-2x^2-3x+2`
`b,`
`P(x)-Q(x)=(x^4+5x^3-x^2-x+1)-(x^4+2x^3-2x^2-3x+2)`
`P(x)-Q(x)= x^4+5x^3-x^2-x+1-x^4-2x^3+2x^2+3x-2`
`P(x)-Q(x)=(x^4-x^4)+(5x^3-2x^3)+(-x^2+2x^2)+(-x+3x)+(1-2)`
`P(x)-Q(x)=3x^3+x^2+2x-1`
Có:
-2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2
=2x3 + 3x2 - 2x + 3. Chọn C
`@` `\text {Ans}`
`\downarrow`
`a)`
\(P(x) = 5x^3 + 3 - 3x^2 + x^4 - 2x - 2 + 2x^2 + x\)
`= x^4 + 5x^3 + (-3x^2 + 2x^2) + (-2x+x) + (3-2)`
`= x^4 + 5x^3 - x^2 - x + 1`
\(Q(x) = 2x^4 + x^2 + 2x + 2 - 3x^2 - 5x + 2x^3 - x^4\)
`= (2x^4 - x^4) + 2x^3 + (x^2 - 3x^2) + (2x-5x) + 2`
`= x^4 + 2x^3 - 2x^2 - 3x +2`
`b)`
`P(x)+Q(x) = (x^4 + 5x^3 - x^2 - x + 1) + (x^4 + 2x^3 - 2x^2 - 3x +2)`
`= x^4 + 5x^3 - x^2 - x + 1 + x^4 + 2x^3 - 2x^2 - 3x +2`
`= (x^4+x^4)+(5x^3 + 2x^3) + (-x^2 - 2x^2) + (-x-3x) + (1+2)`
`= 2x^4 + 7x^3 - 3x^2 - 4x + 3`
`P(x)-Q(x)=(x^4 + 5x^3 - x^2 - x + 1) - (x^4 + 2x^3 - 2x^2 - 3x +2)`
`= x^4 + 5x^3 - x^2 - x + 1 - x^4 - 2x^3 + 2x^2 + 3x -2`
`= (x^4 - x^4) + (5x^3 - 2x^3) + (-x^2+2x^2)+(-x+3x)+(1-2)`
`= 3x^3 + x^2 + 2x - 1`
`Q(x)-P(x) = (x^4 + 2x^3 - 2x^2 - 3x +2)-(x^4 + 5x^3 - x^2 - x + 1)`
`= x^4 + 2x^3 - 2x^2 - 3x +2-x^4 - 5x^3 + x^2 + x - 1`
`= (x^4-x^4)+(2x^3 - 5x^3)+(-2x^2+x^2)+(-3x+x)+(2-1)`
`= -3x^3 - x^2 - 2x + 1`
`@` `\text {Kaizuu lv u.}`
a. Ta có:
f(x) = x3 - 3x2 + 2x - 5 + x2 = x3 -2x2 + 2x- 5
Bậc của đa thức f(x) là 3 (0.5 điểm)
g(x) = -x3 - 5x + 3x2 + 3x + 4 = -x3 + 3x2 - 2x + 4
Bậc của đa thức g(x) là 3 (0.5 điểm)
a. Ta có:
f(x) = -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2
= 2x3 + 3x2 - 2x + 3 (0.5 điểm)
g(x) = 2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2
= 2x3 + 3x2 - 7x + 2 (0.5 điểm)
a. Ta có: A(x) = x5 + x2 + 5x + 6 - x5 - 3x - 5
= x2 + 2x + 1 (0.5 điểm)
B(x) = x4 + 2x2 - 3x - 3 - x4 - x2 + 3x + 4 = x2 + 1 (0.5 điểm)
a) P(x) = 5x^3 - 3x + 2 - x - x^2 + 3/5x + 3
= 5x^3 - x^2 + (-3x - x + 3/5x) + (2 + 3)
= 5x^3 - x^2 - 17/5x + 5
Q(x) = -5x^3 + 2x - 3 + 2x - x^2 - 2
= -5x^3 + (2x + 2x) - x^2 + (-3 - 2)
= -5x^3 + 4x - x^2 - 5
b) M(x) = P(x) + Q(x)
= 5x^3 - x^2 - 17/5x + 5 + (-5x^3) + 4x - x^2 - 5
= (5x^3 - 5x^3) + (-x^2 - x^2) + (-17/5x + 4x) + (5 - 5)
= -2x^2 + 3/5x
N(x) = P(x) - Q(x)
= 5x^3 - x^2 - 17/5x + 5 - (-5x^3 + 4x - x^2 - 5)
= 5x^3 - x^2 - 17/5x + 5 + 5x^3 - 4x + x^2 + 5
= (5x^3 + 5x^3) + (-x^2 + x^2) + (-17/5x - 4x) + (5 + 5)
= 10x^3 - 37/5x + 10
c) M(x) = -2x^2 + 3/5x = 0
<=> -x(2x - 3/5) = 0
<=> -x = 0 hoặc 2x - 3/5 = 0
<=> x = 0 hoặc 2x = 3/5
<=> x = 0 hoặc x = 3/10
Vậy: nghiệm của M(x) là 3/10
a: P(x)=x^4-2x^4-5x^3-7x^2+2x-1
=-x^4-5x^3-7x^2+2x-1
Q(x)=3x^4-2x^4+5x^3+6x^2-2x+5
=x^4+5x^3+6x^2-2x+5
\(a)\)
\(f\left(x\right)=2x.\left(x^2-3\right)-4.\left(1-2x\right)+x^2.\left(x-2\right)+\left(5x+3\right)\)\(=2x^3-6x-4+8x+x^3-2x^2+5x+3=3x^3+7x-1-2x^2=3x^3-2x^2+7x-1\)\(g\left(x\right)=-3.\left(1-x^2\right)-2.\left(x^2-2x-1\right)=-3+3x^2-2x^2+4x+2=-1+x^2+4x=x^2+4x-1\)
\(b)\)
\(h\left(x\right)=f\left(x\right)-g\left(x\right)=\left(3x^3-2x^2+7x-1\right)-\left(-1+x^2+4x\right)=x^2+4x-1=3x^3-2x^2+7x-1+1-x^2-4x=3x^3-3x^2+3x\)
\(\text{Xét}:\)
\(3x^3-3x^2+3x=0\)
\(\rightarrow3x.\left(x^2-x+1\right)=0\)
\(\rightarrow x.\left(x^2-x+1\right)=0\)
\(\rightarrow\orbr{\begin{cases}3x.\left(x^2-x+1\right)=0\\x.\left(x^2-x+1\right)=0\end{cases}}\) \(\rightarrow\orbr{\begin{cases}x=0\\x^2-x+1=0\end{cases}}\)
\(\rightarrow\orbr{\begin{cases}x=0\\x\notinℝ\end{cases}}\) \(\rightarrow x=0\)
\(\text{Vậy nghiệm của}\)\(h\left(x\right)\)\(\text{là}:\)\(0\)
Ta có:
(2x – 3) . (x2 – 5x + 1)
= 2x. (x2 – 5x + 1) + (-3). (x2 – 5x + 1)
= 2x . x2 + 2x . (-5x) + 2x . 1 + (-3).x2 + (-3).(-5x) + (-3). 1
= 2x3 + (-10x2 ) + 2x + (-3x2) + 15x + (-3)
= 2x3 + (-10x2 + -3x2) + (2x + 15x) + (-3)