K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2021

\(20-6\sqrt{11}\)

\(\left(\sqrt{11}\right)^2-6\sqrt{11}+9\)

\(\left(\sqrt{11}\right)^2-6\sqrt{11}+3^2\)

\(\left(\sqrt{11}-3\right)^2\)

dễ thấy \(\sqrt{11}>3< =>\sqrt{11}-3>0\)

\(\left(\sqrt{11}-3\right)^2\)

\(\left|\sqrt{11}-3\right|\)

\(\sqrt{11}-3\)

30 tháng 6 2017

\(\frac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)

\(=\frac{\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)^2\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)

\(=\frac{\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)\sqrt{\left(5-2\sqrt{6}\right)^2.\left(5-2\sqrt{6}\right)}}{9\sqrt{3}-11\sqrt{2}}\)

\(=\frac{\left[25-\left(2\sqrt{6}\right)^2\right]\sqrt{\left(5-2\sqrt{6}\right)^3}}{9\sqrt{3}-11\sqrt{2}}\)

\(=\frac{\sqrt{125-150\sqrt{6}+360-48\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)

\(=\frac{\sqrt{485-198\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)

\(=\frac{\sqrt{243-2.9\sqrt{3}.11\sqrt{2}+242}}{9\sqrt{3}-11\sqrt{2}}\)

\(=\frac{\sqrt{\left(9\sqrt{3}-11\sqrt{2}\right)^2}}{9\sqrt{3}-11\sqrt{2}}=1\)

7 tháng 3 2019

Bang 1 nha ban

31 tháng 5 2016

\(\frac{\left(5+\sqrt{24}\right)\left(49-20\sqrt{6}\right).\sqrt{5-2\sqrt{6}}}{9\sqrt{30}-11\sqrt{2}}=\frac{\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)^2.\sqrt{5-2\sqrt{6}}}{9\sqrt{30}-11\sqrt{2}}\)

\(=\frac{\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)\left(5-2\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{30}-11\sqrt{2}}\)

\(=\frac{\left(25-24\right)\left(\sqrt{3}-\sqrt{2}\right)^2.\left(\sqrt{3}-\sqrt{2}\right)}{9\sqrt{30}-11\sqrt{2}}\)\(=\frac{\left(\sqrt{3}-\sqrt{2}\right)^3}{9\sqrt{30}-11\sqrt{2}}\)

 Đến đây k biết làm

24 tháng 6 2016
  • \(5-2\sqrt{6}=3-2\sqrt{2}\cdot\sqrt{3}+2=\left(\sqrt{3}-\sqrt{2}\right)^2\Rightarrow\sqrt{5-2\sqrt{6}}=\sqrt{3}-\sqrt{2}\)
  • Tương tự \(5+2\sqrt{6}=\left(\sqrt{3}+\sqrt{2}\right)^2\)
  • Tử số: \(TS=\left(\sqrt{3}+\sqrt{2}\right)^2\left(49-20\sqrt{6}\right)\left(\sqrt{3}-\sqrt{2}\right)=\)

\(=\left(\sqrt{3}+\sqrt{2}\right)\left(49-20\sqrt{6}\right)\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)=\)

\(=49\sqrt{3}+49\sqrt{2}-20\cdot3\sqrt{2}-20\cdot2\sqrt{3}=9\sqrt{3}-11\sqrt{2}\)

  • Vậy C = 1.
21 tháng 10 2021

\(A=\sqrt{6-\sqrt{11}}-\sqrt{6+\sqrt{11}}=\dfrac{\sqrt{2}\left(\sqrt{6-\sqrt{11}}-\sqrt{6+\sqrt{11}}\right)}{\sqrt{2}}=\dfrac{\sqrt{12-2\sqrt{11}}-\sqrt{12+2\sqrt{11}}}{\sqrt{2}}=\dfrac{\sqrt{\left(\sqrt{11}-1\right)^2}-\sqrt{\left(\sqrt{11}+1\right)^2}}{\sqrt{2}}=\dfrac{\sqrt{11}-1-\sqrt{11}-1}{\sqrt{2}}=\dfrac{-2}{\sqrt{2}}=-\sqrt{2}\)

21 tháng 10 2021

\(A=\sqrt{\left(\sqrt{\dfrac{11}{2}}-\sqrt{\dfrac{1}{2}}\right)^2}-\sqrt{\left(\dfrac{11}{2}+\sqrt{\dfrac{1}{2}}\right)^2}\\ A=\sqrt{\dfrac{11}{2}}-\sqrt{\dfrac{1}{2}}-\sqrt{\dfrac{11}{2}}-\sqrt{\dfrac{1}{2}}\\ A=-2\sqrt{\dfrac{1}{2}}=-\dfrac{2\sqrt{2}}{2}=-\sqrt{2}\)

2 tháng 10 2021

\(a,=\sqrt{\dfrac{81}{25}}=\dfrac{9}{5}\\ b,\approx6,39\\ c,=\sqrt{8,1\cdot20\cdot8}=\sqrt{81\cdot16}=\sqrt{81}\cdot\sqrt{16}=9\cdot4=36\\ d,=\sqrt{\left(\sqrt{6}+\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}\\ =\sqrt{6}+\sqrt{5}-\sqrt{6}+\sqrt{5}=2\sqrt{5}\)

2 tháng 10 2021

a) \(\sqrt{3\dfrac{6}{25}}=\sqrt{\dfrac{81}{25}}=\dfrac{9}{5}\)

b) \(\sqrt[3]{216}=6\)

c) \(\sqrt{8,1}.\sqrt{20}.\sqrt{8}=\dfrac{9\sqrt{10}}{10}.2\sqrt{5}.2\sqrt{2}=36\)

d) \(\sqrt{11+2\sqrt{30}}-\sqrt{11-2\sqrt{30}}=\sqrt{\left(\sqrt{6}+\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}=\sqrt{6}+\sqrt{5}-\sqrt{6}+\sqrt{5}=2\sqrt{5}\)

21 tháng 10 2019

Không thể tính được do \(15< 10\sqrt{11}\)

12 tháng 8 2020

1)  Cách 1 :

\(M=\sqrt{11-6\sqrt{2}}+\sqrt{11+6\sqrt{2}}\)

\(M=\sqrt{9-6\sqrt{2}+2}+\sqrt{9+6\sqrt{2}+2}\)

\(M=\sqrt{\left(3-\sqrt{2}\right)^2}+\sqrt{\left(3+\sqrt{2}\right)^2}\)

\(M=\left|3-\sqrt{2}\right|+\left|3+\sqrt{2}\right|\)

\(M=3-\sqrt{2}+3+\sqrt{2}=6\)

Cách 2 :

\(M=\sqrt{11-6\sqrt{2}}+\sqrt{11+6\sqrt{2}}\)

\(\Rightarrow M^2=11-6\sqrt{2}+2\sqrt{11-6\sqrt{2}}.\sqrt{11+6\sqrt{2}}+11+6\sqrt{2}\)

\(\Leftrightarrow M^2=22+2.7=36\)

\(\Leftrightarrow M=6\left(\sqrt{11-6\sqrt{2}}+\sqrt{11+6\sqrt{2}}>0\right)\)

2) 

\(A=53-20\sqrt{4+\sqrt{9-4\sqrt{2}}}\)

\(\Leftrightarrow A=53-20\sqrt{4+\sqrt{8-4\sqrt{2}+1}}\)

\(\Leftrightarrow A=53-20\sqrt{4+\sqrt{\left(2\sqrt{2}-1\right)^2}}\)

\(\Leftrightarrow A=53-20\sqrt{4+\left|2\sqrt{2}-1\right|}\)

\(\Leftrightarrow A=53-20\sqrt{4+2\sqrt{2}-1}\)

\(\Leftrightarrow A=53-20\sqrt{3+2\sqrt{2}}\)

\(\Leftrightarrow A=53-20\sqrt{2+2\sqrt{2}+1}\)

\(\Leftrightarrow A=53-20\left(\sqrt{2}+1\right)\)

\(\Leftrightarrow A=53-20\sqrt{2}-20=33-20\sqrt{2}\)

12 tháng 8 2020

3) 

\(M=\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\)

\(M=\sqrt{3-\sqrt{5}}.\left(3\sqrt{10}-3\sqrt{2}+5\sqrt{2}-\sqrt{10}\right)\)

\(M=\sqrt{3-\sqrt{5}}\left(2\sqrt{10}+2\sqrt{2}\right)\)

\(M=2\sqrt{2}.\sqrt{3-\sqrt{5}}\left(\sqrt{5}+1\right)\)

\(\Rightarrow M^2=8.\left(3-\sqrt{5}\right).\left(5+2\sqrt{5}+1\right)\)

\(\Leftrightarrow M^2=\left(24-8\sqrt{5}\right)\left(6+2\sqrt{5}\right)\)

\(\Leftrightarrow M^2=144+48\sqrt{5}-48\sqrt{5}-80\)

\(\Leftrightarrow M^2=64\Leftrightarrow M=8\left(\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right).\left(\sqrt{10}-\sqrt{2}\right)>0\right)\)

24 tháng 8 2023

a) \(\sqrt{6-\sqrt{11}}\cdot\sqrt{6+\sqrt{11}}\)

\(=\sqrt{\left(6-\sqrt{11}\right)\left(6+\sqrt{11}\right)}\)

\(=\sqrt{6^2-\left(\sqrt{11}\right)^2}\)

\(=\sqrt{36-11}\)

\(=\sqrt{25}\)

\(=\sqrt{5^2}\)

\(=5\)

b) \(\sqrt{8+\sqrt{15}}\cdot\sqrt{8-\sqrt{15}}\)

\(=\sqrt{\left(8+\sqrt{15}\right)\left(8-\sqrt{15}\right)}\)

\(=\sqrt{8^2-\left(\sqrt{15}\right)^2}\)

\(=\sqrt{64-15}\)

\(=\sqrt{49}\)

\(=\sqrt{7^2}\)

\(=7\)

a: \(=\sqrt{6^2-11}=\sqrt{25}=5\)

b: \(=\sqrt{8^2-15}=\sqrt{49}=7\)

AH
Akai Haruma
Giáo viên
3 tháng 7 2021

Bạn tham khảo 

https://hoc24.vn/cau-hoi/rut-gonfracleft52sqrt6rightleft49-20sqrt6rightsqrt5-2sqrt69sqrt3-11sqrt2.227145517764