Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{1998}{1999}=\frac{1.2.3....1998}{2.3.4...1999}=\frac{1}{1999}$
A=(1+2-3)+(-4+5+6-7)+(-8+9+10-11)+......(-2000+2001+2002-2003)
A=0+0....+0
A=0
Ta thấy 2-3-4=-5
6-7-8=-9
.............
1998-1999-2000=-2001
=> 1+2-3-4+5+6-7-8+....-1999-2000+2001-2003=1-5+5-9+9-...-2001+2001+2002-2003
=> A= 1+2002-2003=0
Vậy A=0
S = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - ...... + 1998 - 1999 - 2000 + 2001 + 2002
S = 1 + (2 - 3 - 4 + 5 )+ (6 - 7 - 8 + 9) + (10 - ...... + (1998 - 1999 - 2000 + 2001) + 2002
S=1+0+0...+0+2002
S= 1+2002
S=2003
Lời giải:
$S=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+...+(1997+1998-1999-2000)+2001+2002$
$=\underbrace{(-4)+(-4)+....+(-4)}_{500}+2001+2002$
$=(-4).500+2001+2002=2003$
D = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ... - 1999 - 2000 + 2001 + 2002 - 2003
D = ( 1 + 2 - 3 - 4 ) + ( 5 + 6 - 7 - 8 ) + ... + ( 1997 + 1998 - 1999 - 2000 ) + 2001 + 2002 - 2003
D = ( -4 ) + ( -4 ) + ... + ( -4 ) + ( 2001 + 2002 - 2003 )
D = ( -4 ) . 500 + 2000
D = -2000 + 2000
D = 0
D = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ............. - 1999 - 2000 + 2001 + 2002 - 2003
D = ( 1 + 2 - 3 - 4 ) + ( 5 + 6 - 7 - 8 ) + ............ + ( 1997 + 1998 - 1999 - 2000 ) + 2001 + 2002 - 2003
D = ( -4 ) + ( -4 ) + .............. + ( -4 ) + ( 2001 + 2002 - 2003 )
D = ( -4 ) . 500 + 2000
D = -2000 + 2000
D = 0
Ta có Đặt B = \(\frac{1999}{1}+\frac{1998}{2}+...+\frac{1}{1999}\)(1999 số hạng)
\(=\left(1+1+1+...+1\right)+\frac{1998}{2}+\frac{1997}{3}+...+\frac{1}{1999}\)(1999 số hạng 1)
\(=1+\left(\frac{1998}{2}+1\right)+\left(\frac{1997}{3}+1\right)+...+\left(\frac{1}{1999}+1\right)\)(1998 cặp số)
= \(\frac{2000}{2}+\frac{2000}{3}+...+\frac{2000}{1999}+\frac{2000}{2000}\)
= \(2000\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1999}+\frac{1}{2000}\right)\)
Khi đó \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{1999}{1}+\frac{1998}{2}+...+\frac{1}{1999}}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{2000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}\right)}=\frac{1}{2000}\)
A=-1-2+3+4-5-6+7+8-...-1997-1998+1999+2000
A=(0-1-2+3)+(4-5-7+7)+...+(1996-1997-1998+1999)+2000
A=0+0+...+0+2000
A=2000