K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

n+4:n+2

n+2+2:n+2

ma n+2:n+2

suy ra 2:n+2

n+2 là ước của 2

ước của 2 là :1,-1,2,-2

n+2=1 suy ra n=1-2 suy ra n=?

các trường hợp khác làm tương tự nhà và cả phần b nữa

3n+7:n+1

(3n+3)+3+7:n+1

3(n+1)+10:n+1

ma 3(n+1):n+1

suy ra 10:n+1 va n+1 thuoc uoc cua 10

den day lam nhu phan tren la duoc 

nhớ **** mình nha

6 tháng 1 2018

n + 4\(⋮\)n+2
=> ( n + 2) + 2 \(⋮\)n + 2  mà n + 2\(⋮\)n+2
=>2 \(⋮\)n+ 2
=> n +2\(\in\)Ư(2)={1;2}
=> n \(\in\){ -1:0} mà n \(\in\)N
=> n\(\in\){0}
    Vậy n= 0

21 tháng 6 2017

Để : 2x - 3 chia hết cho 2 

Thì 2x - 3 thuộc B(2) = {0;2;4;6;......}

=> 2x thuộc {5;7;9;.......}

=> x = ? 

22 tháng 6 2017

lam the ma cung dung u

20 tháng 11 2014

B,

6n+7 = 6n + 3 +4= 3(2n+1)+4 chia hết cho 2n + 1

Suy ra 4 chia hết cho 2n + 1 Suy ra 2n +1 thuộc Ư (4)) và n là số lẻ

Ư (4) ={ 1;2;4}

Vì n là số lẻ nên

2n + 1 =1 

 2n       =1-1

2n        =0

 n          = 0 : 2 =0

Vậy n =0

30 tháng 12 2015

A3n+7 chia het cho n+2

3n-12+5 chia het cho n+2

(3n-12)+5 chia het cho n+2

3(n-4)+5 chia het cho n+2

=>5 chia het cho n+2

=>n+2 thuoc (U)5={1;-1;5;-5}

Neu:n+2=1=>n=-1(loai)

Neu:n+2=-1=>n=-3(loai)

Neu:n+2=5=>n=3

Neu:n+2=-5=>n=-7(loai)

Vay:n=3

6 tháng 2 2017

Ta có: a+5b chia hết cho 7

=>10(a+5b) chia hết cho 7

=>10a+50b chia hết cho 7

=>10a+b+49b chia hết cho 7

=>(10a+b+49b)-49b chia hết cho 7( vì số chia hết cho 7-một số chia hết cho 7 bằng 1 số chia hết cho 7)

=>10a+b chia hết cho 7

13 tháng 11 2016
  • 76+75-74  chia het cho 55

Đặt A = 76+75-74  

=> A = 74.( 7+ 7 - 1 )

=> A = 74 . ( 49 + 6 )

=> A = 74 . 55 

=> A chia hết cho 55 

Đặt B = 81+ 27- 9  ( Phần này hơi khó nhưng mình làm giùm bạn theo cách MOD )

Gọi     I = 817

Ta có : 405 = 81 . 5

vì 817 đồng dư với 0 ( Mod 81) => I chia hết cho 81 => I = 81k ( k\(\ne\)0) (1)

Vì 81 đồng dư với 1 ( Mod 5 ) => 817 đồng dư với 17 đồng dư với 1 (Mod 5 )

=> I - 1 chia hết cho 5 ( 2 )

Mà I = 81k (theo 1)

=> I - 1 = 81k -1  ( 3 )

=> I - 1 = 80k + k - 1 

Mà I - 1 Chia hết cho 5 ( theo 2 ) , 80k chia hết cho 5

=> k - 1 chia hết cho 5

Đặt k = 5q + 1 

Thay vào Biểu Thức 3 ta có :

I - 1 = 81 (5q + 1) - 1

=> I = 405q + 81

=> I chia cho 405 dư 81

Gọi 279 là H

Ta có :

279 đồng dư với 0 (Mod 81)

=> H chia Hết 81 => H = 81k ( k\(\ne\)0)

Vì 27 = 327 

Mà 34 đồng dư với 1 theo (mod 5)

 327 = 324 . 27 mà 324 đồng dư với 1 (mod 5) ; 27 chia 5 dư 2

=> 327 đồng dư với 1 . 2 = 2 (mod 5 )

=> H - 2 chia hết cho 5

vì H = 81k 

=> H - 2 = 81k - 2 

=> H - 2 = 80k + k - 2 

Vì H - 2 chia hết cho 5 ; 80k chia hết cho 5 

=> k - 2 chia hết cho 5

Đặt k = 5q + 2 

Thay vào Ta có :

H = 81 ( 5q + 2 )

=> H = 405q + 162

=> H chia 405 dư 162

Ta có :

I + H - 9 đồng dư với 81 + 162 - 9 = 234

Như vậy 81+279-9  không chia hết cho 405 

hay nói cách khác là bài toán bị sai