K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2019

\(A=\frac{4x^2-12x+15}{x^2-3x+3}=4+\frac{3}{x^2-3x+3}=4+\frac{3}{\left(x-\frac{3}{2}\right)^2+\frac{3}{4}}\le8\)

dau '=' xay ra khi \(x=\frac{3}{2}\)

\(B=\frac{4x^2-8x+12}{x^2-2x+5}=4-\frac{8}{x^2-2x+5}=4-\frac{8}{\left(x-1\right)^2+4}\le2\)

dau '=' xay ra khi \(x=1\)

12 tháng 2 2019

1,\(A=2x^2-6x+7\)

   \(=2\left(x^2-3x+\frac{9}{4}\right)+\frac{5}{2}\)

   \(=2\left(x-\frac{3}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)

Dấu "=" khi \(x=\frac{3}{2}\)

2,\(B=\frac{2x^2-6x+5}{x^2-2x+1}\left(ĐKXĐ:x\ne1\right)\)

\(\Leftrightarrow Bx^2-2Bx+B=2x^2-6x+5\)

\(\Leftrightarrow x^2\left(B-2\right)+2x\left(3-B\right)+B-5=0\)(1) 

*Với B = 2 thì \(\left(1\right)\Leftrightarrow x^2\left(2-2\right)+2x\left(3-2\right)+2-5=0\)

                                \(\Leftrightarrow2x-3=0\)

                                \(\Leftrightarrow x=\frac{3}{2}\left(TmĐKXĐ\right)\)

*Với \(B\ne2\)thì pt (1) là pt bậc 2 ẩn x tham số B

Pt (1) có nghiệm khi \(\Delta\ge0\)

                          \(\Leftrightarrow\left(3-B\right)^2-\left(B-2\right)\left(B-5\right)\ge0\)

                           \(\Leftrightarrow9-6B+B^2-B^2+7B-10\ge0\)

                           \(\Leftrightarrow B\ge1\)

Dấu "=" xảy ra khi \(\left(1\right)\Leftrightarrow-x^2+4x-4=0\)

                                        \(\Leftrightarrow-\left(x-2\right)^2=0\)

                                        \(\Leftrightarrow x=2\left(TmĐKXĐ\right)\)

Thấy 1 < 2 nên BMin = 1<=> x = 2

Vậy ....

12 tháng 2 2019

A=(9x2-6x+1)+(7x2+7)-1=(3x2+1)2+7(x2+7)-1

Vì: (3x2+1)2\(\ge\)0 và 7(x2+7)\(\ge\)0

Nên:A\(\ge\) -1

B=\(\frac{A-2}{\left(x-1\right)^2}\)\(\ge\)  -3

11 tháng 12 2016

Ta có: A=\(\frac{7}{2x^2-6x+100}=\frac{7}{2x^2-6x+4.5+95.5}\)

              =\(\frac{7}{2\left(x^2-3x+2.25\right)+95.5}=\frac{7}{2\left(x-1.5\right)^2+95.5}\)

              Ta có: Để phân số  \(\frac{7}{2\left(x-1.5\right)^2+95.5}\)lớn nhất <=> \(2\left(x-1.5\right)^2+95.5\)nhỏ nhất
Ta có: 2(x-1.5)^2 lớn hơn hoặc bằng 0 với mọi x thuộc R
=> \(2\left(x-1.5\right)^2+95.5\)lớn hơn hoặc bằng 95.5 với mọi x thuộc R
Dấu"=" xảy ra khi \(2\left(x-1.5\right)^2+95.5\)=95.5
<=>  2(x-1.5)^2=0
<=>  x-1.5=0
<=> x=1.5
Vậy GTLN của biểu thức A là A=\(\frac{7}{95.5}=\frac{14}{191}\)tại x=1.5
Câu b tương tự

10 tháng 1 2020

Phân thức đại số

11 tháng 1 2020

bạn có thể giải mấy câu kia luôn

8 tháng 9 2019

Tớ làm đc 1b và 2ab thôi hehe

1 tháng 6 2019

\(1,\)\(\frac{x+2}{x+3}+\frac{x-1}{x+1}=\frac{2}{x^2+4x+3}+1\)

\(\Rightarrow\frac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x+3\right)}+\frac{\left(x-1\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}=\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{\left(x+1\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}\)

\(\Rightarrow\)\(x^2+3x+2+x^2-2x-3=2+x^2+4x+3\)

\(\Rightarrow x^2-3x-6=0\)

.....

1 tháng 6 2019

\(\frac{x+1}{x-2}+\frac{2x-1}{x-1}=\frac{2}{x^2-3x+2}+\frac{11}{2}\)

\(\Rightarrow\frac{2\left(x+1\right)\left(x-1\right)}{2\left(x-2\right)\left(x-1\right)}+\frac{2\left(2x-1\right)\left(x-2\right)}{2\left(x-1\right)\left(x-2\right)}\)\(=\frac{4}{2\left(x-1\right)\left(x-2\right)}+\frac{22\left(x-1\right)\left(x-2\right)}{2\left(x-1\right)\left(x-2\right)}\)

\(\Rightarrow2x^2-2+4x^2-10x+4=4+22x^2-66x+44\)

.....