K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2021

\(x^2+3y^2-4x+6y+7=0\\ \Leftrightarrow\left(x^2-4x+4\right)+\left(3y^2+6y+3\right)=0\\ \Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

\(3x^2+y^2+10x-2xy+26=0\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(2x^2+10x+\dfrac{25}{8}\right)+\dfrac{183}{8}=0\\ \Leftrightarrow\left(x-y\right)^2+2\left(x^2+2\cdot\dfrac{5}{2}x+\dfrac{25}{4}\right)+\dfrac{183}{8}=0\\ \Leftrightarrow\left(x-y\right)^2+2\left(x+\dfrac{5}{2}\right)^2+\dfrac{183}{8}=0\\ \Leftrightarrow x,y\in\varnothing\)

Sửa đề: \(3x^2+6y^2-12x-20y+40=0\)

\(\Leftrightarrow\left(3x^2-12x+12\right)+\left(6y^2-20y+\dfrac{50}{3}\right)+\dfrac{34}{3}=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y^2-2\cdot\dfrac{5}{3}y+\dfrac{25}{9}\right)+\dfrac{34}{3}=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y-\dfrac{5}{3}\right)^2+\dfrac{34}{3}=0\\ \Leftrightarrow x,y\in\varnothing\)

\(2\left(x^2+y^2\right)=\left(x+y\right)^2\\ \Leftrightarrow2x^2+2y^2=x^2+2xy+y^2\\ \Leftrightarrow x^2-2xy+y^2=0\\ \Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x-y=0\Leftrightarrow x=y\)

21 tháng 9 2021

xy là x.y hay là x và y vậy bn

21 tháng 9 2021

X và y là số nguyên phải ko

13 tháng 7 2017

\(x^2+2xy+2y^2=7.\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+y^2=7\)

\(\Leftrightarrow\left(x+y\right)^2+y^2=7\)

Vì \(\hept{\begin{cases}\left(x+y\right)^2>0\\y^2>0\end{cases}}\)nên \(y^2< 7\)

Mà y nguyên dương nên suy ra \(\orbr{\begin{cases}y^2=1\\y^2=4\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\y=2\end{cases}\Rightarrow}\orbr{\begin{cases}\left(x+y\right)^2=7-1=6\\\left(x+y\right)^2=7-4=3\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}x+y=\sqrt{6}\\x+y=\sqrt{3}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{6}-1\left(khongthoaman\right)\\y=\sqrt{3}-2\left(khongthoaman\right)\end{cases}}}\)

Vậy không có cặp x, y nào thỏa mãn đề bài

12 tháng 7 2017

Sai đề rùi bạn ơi phải là: \(x^2+2xy+y^2=7\)chứ !!!

12 tháng 7 2017

tách ra ta đc (x+y)^2 + y^2=7 =>y^2 < 7 => y^2= 1 hoặc 4 thay vào rồi tính x 

12 tháng 7 2017

Cảm ơn bạn nhìu nha!~~~

11 tháng 6 2018

Ta có Pt 

<=> \(x^2+x-2+2y^2-2xy^2+y-xy=1\)

<=> \(\left(x-1\right)\left(x+2\right)+2y^2\left(1-y\right)+y\left(1-y\right)=1\)

<=>\(\left(x-1\right)\left(x+2-2y^2-y\right)=1\)

vì x,y là các số nguyên ..,. xét ước của 1 là xong 

^_^

11 tháng 6 2018

p/s : t vt nhầm tí, đoạn nhóm nhân tử phải là x-1 nhá, dạo này lú quá ^^

=>x^2+4xy+4y^2+y^2-2y<0

=>y^2-2y<0

=>0<y<2

=>y=1 và \(x\in Z\)

NV
5 tháng 2 2021

\(x^3-32x=-y\left(2x+1\right)\Rightarrow-y=\dfrac{x^3-32x}{2x+1}\)

\(\Leftrightarrow-8y=\dfrac{8x^3-256x}{2x+1}=4x^2-2x-127+\dfrac{127}{2x+1}\)

\(\Rightarrow2x+1=Ư\left(127\right)=\left\{-127;-1;1;127\right\}\)

\(\Rightarrow\left[{}\begin{matrix}2x+1=-127\left(loại\right)\\2x+1=-1\left(loại\right)\\2x+1=1\left(loại\right)\\2x+1=127\end{matrix}\right.\) \(\Rightarrow x=63\Rightarrow y=-1953< 0\) (loại)

Pt đã cho không có nghiệm nguyên dương