Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(x=0\Rightarrow y^2=-2y\Leftrightarrow\orbr{\begin{cases}y=0\\y=-2\end{cases}}\)
Xét \(x\ne0\Rightarrow x^2\ge1\)(vì \(x\inℤ\))
\(2x^2-2xy+y^2=2\left(x-y\right)\Leftrightarrow x^2+\left(x^2-2xy+y^2\right)-2\left(x-y\right)=0\)
\(\Leftrightarrow x^2+\left(x-y\right)^2-2\left(x-y\right)=0\)
Vì \(x^2\ge1\)nên \(x^2+\left(x-y\right)^2-2\left(x-y\right)\ge\left(x-y\right)^2-2\left(x-y\right)+1=\left(x-y-1\right)^2\ge0\)
Mà đề yêu cầu giải biểu thức bằng 0 nên ta xét điều kiện xảy ra của dấu "=": \(\hept{\begin{cases}x^2=1\\x-y-1=0\end{cases}}\)
\(\orbr{\begin{cases}x=1,y=0\\x=-1,y=-2\end{cases}}\)
\(\hept{\begin{cases}x^2=1\\x-y-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=1\\y=0\end{cases}}\\\hept{\begin{cases}x=-1\\y=-2\end{cases}}\end{cases}}}\)Vậy phương trình nhận 4 nghiệm (x;y)=(0;0),(0;-2),(1;0),(-1;-2).
Ta có \(\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(2x+y\right)\left(4x^2-2xy+y^2\right)-16x\left(x^2-y\right)=32\)
<=> \(\left(2x\right)^3-y^3+\left(2x\right)^3+y^3-16x^3+16xy=32\)
<=> \(8x^3+8x^3-16x^3+16xy=32\)
<=> \(16xy=32\)
<=> \(xy=2\)
=> x, y cùng dấu (vì \(xy>0\))
Vậy có 4 cặp số nguyên (x, y) thoả mãn đẳng thức trên: (1; 2); (2; 1); (-1; -2); (-2; -1)
Do \(x,y,z\inℤ\)
nen tu gia thiet suy ra
\(x^2+4y^2+z^2-2xy-2y+2z\le-1\)
\(\Leftrightarrow\left(x-y\right)^2+\left(z+1\right)^2+\left(y-1\right)^2+2y^2\le1\)
mat khac
\(\hept{\begin{cases}\left(y-1\right)^2+2y^2>0\\\left(x-y\right)^2+\left(z+1\right)^2\ge0\end{cases}}\)
nen \(\left(x-y\right)^2+\left(z+1\right)^2+\left(y-1\right)^2+2y^2=1\)
den day ban lap bang cac gia tri se tim duoc \(\left(x,y,z\right)=\left(0,0,-1\right)\)