Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2 :
tôi làm từng phần 1 nhé
bài 2 :
a)<=>(x+1)+3 chia hết x+4
=>3 chia hết x+4
=>x+4\(\in\){1,-1,3,-3}
=>x\(\in\){-3,-6,-1,-7}
1, 4n-5 chia hết cho 20-1
=>4n-5 chia hết cho 19
=> 4n-5 thuộc B(19)
=> 4n-5 = 19k
=> 4n = 19k + 5
=> n = \(\frac{19k+5}{4}\)
2, (2x+1)(y-5) = 12
=> 2x+1 và y-5 thuộc Ư(12)
Từ đây xét các trường hợp của 2x+1 và y-5 là ra
Gọi ƯCLN(12n+1; 30n+2) là d. Ta có:
12n+1 chie hết cho d => 60n+5 chia hết cho d
30n+2 chia hết cho d => 60n+4 chia hết cho d
=> 60n+5-(60n+4) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(12n+1; 30n+2) = 1
=> \(\frac{12n+1}{30n+2}\)tối giản (Đpcm)
1)4n-5 chia hết cho 20-1
=>4n-5 chia hết cho 19 hay 4n-5 thuộc B(19)={...;-19;0;19;38;..}
=>4n thuộc{...;-14;5;24;43;...}
=>n thuộc{...;6;...}
2)Ta có: (2x+1)(y-5)=12
=>
2x+1 | 1 | 2 | 3 | 4 | 6 | 12 |
2x | 0 | 1 | 2 | 3 | 5 | 11 |
x | 0 | 1 | ||||
y-5 | 12 | 4 | ||||
y | 17 | 9 |
3)Gọi ƯCLN(12n+1;30n+2)=d
Ta có: 12n+1 chia hết cho d; 30n+2 chia hết cho d
=>5(12n+1)chia hết cho d; 2(30n+2) chia hết cho d
=>60n+5 chia hết cho d; 60n+4 chia hết cho d
=>60n+5-(60n+4)chia hết cho d
60n+5-60n-4 chia hết cho d
=>1 chia hết cho d hay d=1
=>ƯCLN(12n+1;30n+2)=1
=>đpcm
a, \(\left(2x+1\right)\times\left(y-5\right)=12\)
Theo đầu bài ta có : \(\left(2x+1\right)\times\left(y-5\right)\)là ước của 12 .
Ta có :
\(12=1\times12=2\times6=3\times4\)
Vì 2x + 1 lẻ \(\Rightarrow2x+1=1\) hoặc \(2x+1=3\)
+ \(2x+1=1\Rightarrow x=0\text{ };\text{ }y-5=12\Rightarrow x=0\text{ };\text{ }y=12\)
+ \(2x+1=3\Rightarrow x=1\text{ };\text{ }y-5=4\Rightarrow x=1\text{ };\text{ }y=9\)
Vậy ta có x = 0 hoặc x = 17 và y = 1 hoặc y = 9
Bài 1:
(2x-1).(y-2) = 12 = 12.1 = (-12).(-1) = 3.4 = (-3).(-4) = 2.6 = (-2).(-6)
TH1: * 2x-1 = 12 => 2x = 11 => x = 11/2
y - 2 = 1 => y = 3 (trường hợp này loại vì x không là số nguyên)
* 2x-1 = 1 => 2x = 2 => x = 1
y-2 = 12 => y = 14 (TM)
...
rùi bn tự xét típ giống như mk ở trên nha!
Bài 2:
a) Để 3/2x-1 là số nguyên
=> 3 chia hết cho 2x-1
=> 2x-1 thuộc Ư(3)={1;-1;3;-3}
nếu 2x-1 =1 => 2x = 2 => x = 1 (TM)
...
rùi bn tự xét típ nha
câu b,c làm tương tự như câu a nha bn
d) Để x -7/x+2 là số nguyên
=> x -7 chia hết cho x + 2
x + 2 - 9 chia hết cho x +2
mà x +2 chia hết cho x + 2
=> 9 chia hết cho x + 2
=> x + 2 thuộc Ư(9)={1;-1;3;-3;9;-9}
...
e) Để 2x+5/x-3 là số nguyên
=> 2x + 5 chia hết cho x-3
2x - 6 + 11 chia hết cho x -3
2.(x-3) + 11 chia hết cho x -3
mà 2.(x-3) chia hết cho x -3
=> 11 chia hết cho x -3
=> x-3 thuộc Ư(11)={1;-1;11;-11}
...
k mk nha
Tìm x ; y thuộc N
1, (2x-5)chia hết cho x-5
2, (x-2) . (y+1) =17
3, (2x+1) . (y-3) =12
4, xy + x + y = 5
a) x . (x + y) = 2
Vì y không thể bằng 0 để giá trị có thể tìm được nên y khác 0.
Mà x, y thuộc N* nên x < x + y. Ta thấy chỉ có 2 = 1 . 2. Vậy x = 1, y = 1.
Câu a chưa chắc lắm nha!
a)x.(x+y)=2
Vì x<x+y mà x,y thuộc N và x không = 0 vì x=0 thì 0.(0+y)=0
mà 2=1.2 nên x=1 , y=1
b) (2x+1).(x-5)=12
2x+1 thuộc Ư(12) thuộc (1,2,3,4,6,12)
mà 2x+1 là số lẻ nên 2x+1 thuộc (1,3)
+2x+1=1
2x=0
x=0
y-5=12
y=17
+2x+1=3
2x=2
x=1
y-5=4
y=9
Với x , y \(\in\)N, y > 5 thì 2x + 1 \(\in\)N ; y - 5 \(\in\)N
\(\Rightarrow\)\(\hept{\begin{cases}2x+1\inƯ\left(12\right)\\y-5\inƯ\left(12\right)\end{cases}}\)
\(Ư\left(12\right)=\left\{1;2;3;4;6;12\right\}\)
Mà 2x + 1 là số lẻ nên ta có bảng sau :
Vậy với \(\hept{\begin{cases}x=0\\y=17\end{cases}}\)hoặc \(\hept{\begin{cases}x=1\\y=9\end{cases}}\)Thoả mãn đề
\(\left(2x+1\right).\left(y-5\right)=12\)
\(\Leftrightarrow12⋮2x+1,y-5\left(2x+1,y-5\inℤ\right)\)
\(\Leftrightarrow2x+1,y-5\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Mà \(2x+1\) chia 2 dư 1 và \(2x+1\inℕ\) . Nên \(2x+1=1;3\)
- Nếu \(2x+1=1\Rightarrow y-5=12\)\(\Rightarrow x=0;y=17\)
- Nếu \(2x+1=3\Rightarrow y-5=4\)\(\Rightarrow x=1;y=9\)
Vậy .............................