Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
1/ \(\left\{{}\begin{matrix}\left(x-2\right)^{72}\ge0\\\left(y+1\right)^{70}\ge0\end{matrix}\right.\)
Mà \(\left(x-2\right)^{72}+\left(y+1\right)^{70}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^{72}=0\\\left(y+1\right)^{70}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
Vậy ...
2/ \(\left\{{}\begin{matrix}\left|x+1\right|\ge0\\\left|y-3\right|\ge0\end{matrix}\right.\)
Mà \(\left|x+1\right|+\left|y-3\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|x+1\right|=0\\\left|y-3\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=3\end{matrix}\right.\)
Vậy ...
3/ \(\left\{{}\begin{matrix}\left(2x-10\right)^{100}\ge0\\\left(x-y\right)^{102}\ge0\end{matrix}\right.\)
Mà \(\left(2x-10\right)^{100}+\left(x-y\right)^{102}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-10\right)^{100}=0\\\left(x-y\right)^{102}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-10=0\\x-y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=5\end{matrix}\right.\)
Vậy ....
4/ \(\left\{{}\begin{matrix}\left|2x+8\right|\ge0\\\left|y+x\right|\ge0\end{matrix}\right.\)
Mà \(\left|2x+8\right|+\left|y+x\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|2x+8\right|=0\\\left|y+x\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+8=0\\y+x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-8\\y=8\end{matrix}\right.\)
Vậy ..
a,2x+5 = 0 hoặc 5-x=0 ( còn lại tự tính)
b,,x2-4=0 hoặc x2-36=0 ( còn lại tự tính)
tương tự như vậy làm câu c
d, bài này dài ( không làm )
e, ......( dài)
f, x={4;5;6}
1, x\(^2\) - 5x = 0
\(\Rightarrow\)x(x-5) = 0
Th1: x = 0
Th2: x- 5 =0
x = 5
2, \(|x-9|\) .( -8) = - 16
\(|x-9|\) = (- 16). ( -8) = 128
Th1: x - 9 = 128
x = 128 + 9 = 137
Th2: x - 9 = - 128
x = -128 + 9 = - 119
3, Th1: 4- 5x = 24
5x = 4- 24 = -20
x = - 20 :5 = -4
Th2: 4- 5x = -24
5x = 4- (-24) = 28
x = 28 :5= 5,6
Vì x < hoặc = 0 \(\Rightarrow\) x = -4
4, x.( x - 2) > 0
\(\Rightarrow\) x và ( x- 2) cùng dấu
Th1: x và (x -2) cùng dương
+ \(\Rightarrow\) x > 0
+ (x - 2) > 0 \(\Rightarrow\) x > 2
Th2: x và ( x- 2) cùng âm
+ \(\Rightarrow\) x < 0
+ ( x - 2) < 0 \(\Rightarrow\) x < 2
Từ 2 trường hợp trên \(\Rightarrow\) x > 2 hoặc x <2
5, x.( x - 2) < 0
\(\Rightarrow\) x và ( x- 2) khác dấu
Th1: x âm và ( x- 2) dương
+ \(\Rightarrow\) x < 0
+ (x -2 ) > 0 \(\Rightarrow\) x > 2
Th2: x dương và ( x- 2 ) âm
+ \(\Rightarrow\) x >0
+ (x - 2) < 0 \(\Rightarrow\) x < 2
1: \(\Leftrightarrow y^2-36=0\)
=>y=6hoặc y=-6
2: \(\Leftrightarrow\left(4-y\right)\left(4+y\right)\left(10-y\right)\left(10+y\right)=0\)
\(\Leftrightarrow y\in\left\{4;-4;10;-10\right\}\)
3: (y+1)(y+5)<0
=>y+5>0 và y+1<0
=>-5<y<-1
4: (y-2)(y+4)<0
=>y+4>0 và y-2<0
=>-4<y<2
5: (y-3)(5-y)>0
=>(y-3)(y-5)<0
=>3<y<5
6: =>y-2>=0
hay y>=2