Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y:\frac{5}{2}=\frac{7}{4}:\frac{7}{3}\)
\(y:\frac{5}{2}=\frac{3}{4}\)
\(y=\frac{3}{4}.\frac{5}{2}\)
\(y=\frac{15}{8}\)
Vậy \(y=\frac{15}{8}\)
Chúc bạn zui ~^^
\(y:\frac{5}{2}=\frac{7}{4}:\frac{7}{3}\)
\(y:\frac{5}{2}=\frac{3}{4}\)
\(y=\frac{3}{4}\cdot\frac{5}{2}\)
\(y=1.875\)
Vậy y = 1.875
=11/3+11/5 x y-4/5=24/5
=20/3 x y-4/5=24/4
=20/3+4/5 x y=24/5
=100/12 x y=24/4
y=24/4:100/12
y=1/2
\(2\frac{8}{15}y-\frac{4}{5}=2\frac{4}{5}\)
\(2\frac{8}{15}y=2\frac{4}{5}+\frac{4}{5}\)
\(2\frac{8}{15}y=3\frac{3}{5}\)
\(y=3\frac{3}{5}:2\frac{8}{15}\)
\(y=1\frac{8}{19}\)
\(\left(\frac{5}{3}+\frac{3}{4}\right):\left(\frac{7}{2}-\frac{9}{4}\right)< A< 3\frac{1}{2}-\frac{1}{2}\)
\(3\frac{1}{2}-\frac{1}{2}=3\)
A=2
\(\frac{5}{x}=\frac{1}{6}+\frac{y}{3}\) => \(\frac{5}{x}=\frac{1}{6}+\frac{2y}{6}=\frac{1+2y}{6}\)
=> 5.6=x.(1+2y)
=>30=x.(1+2y)
rồi bạn tự xét các trường hợp
\(y\div2\frac{1}{3}=1\frac{3}{4}\div2\frac{1}{3}\)
\(1\frac{3}{4}=\frac{7}{4};2\frac{1}{3}=\frac{7}{3}\)
\(y\div2\frac{1}{3}=1\frac{3}{4}\div2\frac{1}{3}\)
\(\Rightarrow y\div\frac{7}{3}=\frac{3}{4}\)
\(\Rightarrow y=\frac{3}{4}\times\frac{7}{3}\)
\(\Rightarrow y=\frac{7}{4}\)
~ Ủng hộ nhé ~
\(y:2\frac{1}{3}=1\frac{3}{4}:2\frac{1}{3}\)
\(y:\frac{7}{3}=\frac{7}{4}:\frac{7}{3}\)
\(y:\frac{7}{3}=\frac{3}{4}\)
\(y=\frac{3}{4}\times\frac{7}{3}\)
\(y=\frac{7}{4}\)
\(y=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+....+\frac{1}{1+2+3+...+49+50}=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{1275}\)\(=2\cdot\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{2550}\right)=2\cdot\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{50.51}\right)\)\(=2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)=2\cdot\left(\frac{1}{2}-\frac{1}{51}\right)=2\cdot\frac{49}{102}=\frac{49}{51}\)
vì 0<x,y,z\(\le\)1 nên (1-x)(1-y) >=0 <=> 1+xy >= x+y
<=> 1+z+xy >= x+y+z
<=> \(\frac{y}{1+z+xy}\le\frac{y}{x+y+z}\left(1\right)\)
tương tự có \(\frac{x}{1+y+xz}\le\frac{x}{x+y+z}\left(2\right);\frac{z}{1+x+xy}\le\frac{z}{x+y+z}\left(3\right)\)
cộng theo vế của (1), (2), (3) ta được
\(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{x+y+z}{x+y+z}\le\frac{3}{x+y+z}\)
dấu "=" xảy ra khi x=y=z=1
y:\(\frac{7}{3}=\frac{7}{4}:\frac{7}{3}\)
y.\(\frac{3}{7}=\frac{7}{4}.\frac{3}{7}\)
y.3/7=3/4
y=3/4:3/7
y=7/3
Vậy y=7/3
7/3
gui loi moi ket bn va tk mk nha
thanks