Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) xyz = 100x + 10y + z
xyzt = 1000x + 100y + 10z + t
B) xyzz + zyx
= 1000x + 100y + 10z + z + 100z + 10y + x
= 1001x + 110y + 111z
2. ta có a+b=3(a-b) => a+b=3a-3b
=> 3b+b=3a-a => 4b=2a
=> \(\frac{a}{b}\)= \(\frac{4}{2}\)=2
3.a.bcd.abc=abcabc
=>a.bcd.abc=abc.1001
=> a.bcd=1001
Trong các số tự nhiên có 1 chữ số chỉ có 1 và 7 là các ước của 1001
Xét a=1 => bcd=1001(loại)
Xét a=7 => bcd=143 (thỏa mãn)
Vậy a=7, b=1, c=4 và d=3.
a/ \(x.y.xy=yyy=y.111\Rightarrow x.xy=111=3.37\Rightarrow x=3;y=7\)
\(\Rightarrow3.7.37=777\)
b/ \(xy.xyz=xyxy=xy.101\Rightarrow xyz=101\Rightarrow x=z=1;y=0\)
\(\Rightarrow10.101=1010\)
a)
\(\overline{ab}\times101=\overline{ab}\times\left(100+1\right)=\overline{ab00}+\overline{ab}=\overline{abab}\)
b)
\(\overline{ab}\times10101=\overline{ab}\times\left(10000+101\right)=\overline{ab0000}+\overline{abab}=\overline{ababab}\)
c)
\(\overline{abc}\times1001=\overline{abc}\times\left(1000+1\right)=\overline{abc000}+\overline{abc}=\overline{abcabc}\)
d)
\(\overline{ab}\times1001=\overline{ab}\times\left(1000+1\right)=\overline{ab000}+\overline{ab}=\overline{ab0ab}\)
3/ Ta có: A=xxyy=1000x+100x+10y+y=1100x+11y=11(100x+y)
Đề A là scp thì 100x+y =11.t2 (t thuộc Z) (1)
Ta có: 1=<x=<9 <=>100=<100x=<900(2)
0=<y=<9 (3)
Từ (2) và (3)=> 100=<100x+y=<909 (4)
Từ (1) và (4)=> 100x+y thuộc {176;275;396;539;704;891}
Mà 100x+y là số có dạng x0y(có dấu gạch trên đầu)
Do đó, x0y=704=> x=7 và y= 4
Bài 2:
a/ gọi 3 số chính phương liên tiếp đó là: (x-1)2;x2;(x+1)2
Ta có: (x-1)2+x2+(x+1)2= x2-2x+1+x2+x2+2x+1= 3x2+2
=> Tổng 3 số cp liên tiếp chia 3 dư 2
c/ Gọi 2 số lẻ đó là (2x-1)2 và (2x+1)2
(2x-1)2+(2x+1)2= 4x2-4x+1 +4x2+4x+1
= 8x2+2=2(4x2+1)
Ta có: 2 chia hết cho 2
=> 2(4x2+1) là scp thì 4x2+1 chia hết cho 2
mà 4x2+1 là số lẻ nên không chia hết cho 2
Do đó. tồng bình phương của 2 số lẻ bất kì không phải là số chính phương
Ta có: 30 < ab + ba + ac < 289 (Ở đây mình không cần biết là các số có chữ số nào khác nhau hay không, mình chỉ cần lấy 10 x số số hạng và 99 x số số hạng là mình sẽ giới hạn được đáp án)
Do 30 < ab + ba + ac < 289 và tổng là các số nguyên tố nên ta có các tổng sau: 36; 49; 64; 81; 100; 121; 144; 169; 196; 289.
Ta xét tổng thì ta lại có: 10a + b + 10b + c + 10c + a = 11a + 11b + 11c = 11(a + b + c)
Suy ra tổng chia hết cho 11 => Tổng của chúng chỉ còn là 121
Bây giờ ta có ab + ba + ac = 121; a + b + c = 11 và các số ab, bc, ca là các số nguyên tố
Vậy có các kết quả đúng là 13 + 37 + 71 = 121 với a = 1; b = 3; c = 7
và 17 + 73 + 31 = 121 với a = 1; b = 7; c = 3
và các đáp án đảo ngược khác như a = 3; b = 1; c = 7 ;...
á đù, nam anh lên đây hỏi 2 bài 4;5 cơ à, phê đấy.