Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=b\cdot k;c=d\cdot k\)
\(\dfrac{a+3b}{b}=\dfrac{bk+3b}{b}=\dfrac{b\left(k+3\right)}{b}=k+3\)
\(\dfrac{c+3d}{d}=\dfrac{dk+3d}{d}=\dfrac{d\left(k+3\right)}{d}=k+3\)
Do đó: \(\dfrac{a+3b}{b}=\dfrac{c+3d}{d}\)
Bài 2:
a: x:y=4:7
=>\(\dfrac{x}{4}=\dfrac{y}{7}\)
mà x+y=44
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x+y}{4+7}=\dfrac{44}{11}=4\)
=>\(x=4\cdot4=16;y=4\cdot7=28\)
b: \(\dfrac{x}{2}=\dfrac{y}{5}\)
mà x+y=28
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{28}{7}=4\)
=>\(x=4\cdot2=8;y=4\cdot5=20\)
Bài 3:
Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=k\)
=>x=5k; y=4k; z=3k
\(M=\dfrac{x+2y-3z}{x-2y+3z}\)
\(=\dfrac{5k+2\cdot4k-3\cdot3k}{5k-2\cdot4k+3\cdot3k}\)
\(=\dfrac{5+8-9}{5-8+9}=\dfrac{4}{6}=\dfrac{2}{3}\)
Bài 1 : x/3 = y/4 = z/5 => x²/9 = y²/16 = z²/25
=> 2x²/18 = 2y²/32 = 3z²/75
=> x²/9 = (2x² + 2y² - 3z²)/(18 + 32 - 75) = - 100/(-25) = 1/4
=> x²/9 = 1/4 => x² = 9/4 => x = ±3/2
y²/16 = 1/4 => y² = 4 => y = ± 2
z²/25 = 1/4 => z² = 25/4 => z = ±5/2
Mà x, y, z cùng dấu.
Vậy (x ; y ; z) = (3/2 ; 2 ; 5/2) , (-3/2 ; -2 ; -5/2)
B3 ko tìm được x,y,z thỏa mãn do kết quả là 1 số không dương
a)6x=4y=>x/4=y/6
4y=3z=>y/3=z/4=>y/6=z/8
x+y+z/4+6+8=18/18=1
x=4;y=6;z=8
b)3x=2y=>x/2=y/3
2y=z=>y/1=z/2=>y/3=z/6
x+y+z/2+3+6=99/11=9
x=18;y=27;z=54
tick dung nha
cách 1:
1. T/có: \(\frac{x}{4}\)=\(\frac{y}{6}\) ; \(\frac{y}{3}\)=\(\frac{z}{4}\) => \(\frac{x}{4}\)=\(\frac{y}{6}\) ; \(\frac{y}{6}\)=\(\frac{z}{8}\)=> Đặt \(\frac{x}{4}\)=\(\frac{y}{6}\)=\(\frac{z}{8}\)=k
=>x=4k, y=6k, z=8k
=> x+y+z=4k+6k+8k=18k=18
=>k=1
=>x=4k=4.1=4
Tương tự vs y và z nhak
Câu 2 cũng dạng tuoeng tự
có \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=>\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y-3z}{2+6-12}=\frac{-20}{-4}=5\)
=> \(x=2.5=10,2y=6.5=30,3z=12.5=60\)
=>\(x=10,y=15,z=20\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{3}=\frac{2y}{6}=\frac{2z}{9}\)
Áp ụng tc của dãy tỉ số bằng nhau Ta có
\(\frac{x}{3}=\frac{2y}{6}=\frac{3z}{9}=\frac{x+2y-3z}{3+6-9}=-\frac{20}{0}\)
Vô nghĩa
=> Đề sai
Theo bài toán :
\(x=\frac{z}{2}\Rightarrow\frac{x}{10}=\frac{\frac{z}{2}}{10}=\frac{z}{20}\)
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{20}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{20}=\frac{x+2y-3z}{10+30-60}=\frac{20}{-20}=-1\)
\(\Rightarrow x=10.-1=-10\)
\(y=15.-1=15\)
\(z=20-1=-20\)
\(\frac{x}{1}=\frac{y}{\frac{1}{2}}=\frac{z}{\frac{1}{3}}=\frac{t}{\frac{1}{4}}=\frac{y-z}{\frac{1}{2}-\frac{1}{3}}=\frac{2}{\frac{1}{6}}=12\)
x = 12
y=1/2 .12 =6
z=1/3 .12 =4
t =1/4 .12 =3