Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2+z^2=4x-2y+6z-14\)
\(\Leftrightarrow x^2-4x+4+y^2+2y+1+z^2-6z+9=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\y+1=0\\z-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-1\\z=3\end{cases}}}\)
\(\Leftrightarrow\) \(x^2\)+ \(y^2\) + \(z^2\) - \(4x\)+ \(2y\) - \(6z\) + \(14\) \(=\) \(0\)
\(\Leftrightarrow\) ( \(x^2\) - \(4x\) + \(4\) ) + ( \(y^2\) + \(2y\) + \(1\) ) \(=\) \(0\)
\(\Leftrightarrow\) ( \(x-2\))2 + \(\left(y+1\right)^2\) + \(\left(z-3\right)^2\) \(=\) \(0\)
\(\Leftrightarrow\) \(\hept{\begin{cases}x=2\\y=-1\\z=3\end{cases}}\)
Ta có: \(x^2+y^2-4x=6z-2y-z^2-14\)
\(x^2+y^2-4x-6z+2y+z^2+14=0\)
\(\left(x^2-4x+2^2\right)+\left(y^2+2y+1\right)+\left(z^2-6z+3^2\right)=0\)
\(\left(x-2\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=0\)
\(\cdot\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)
\(\cdot\left(y+1\right)^2=0\Rightarrow y+1=0\Rightarrow y=-1\)
\(\left(z-3\right)^2=0\Rightarrow z-3=0\Rightarrow z=3\)
hok tốt!
Ta có x2 + y2 - 4x = 6z - 2y - z2 - 14
=> x2 + y2 - 4x - 6z + 2y + z2 + 14 = 0
=> (x2 - 4x + 4) + (y2 + 2y + 1) + (z2 - 6z + 9) = 0
=> (x - 2)2 + (y + 1)2 + (z - 3)2 = 0
Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\\\left(y+1\right)^2\ge0\forall y\\\left(z-3\right)^2\ge0\forall z\end{cases}}\Rightarrow\left(x-2\right)^2+\left(y+1\right)^2+\left(z-3\right)^2\ge0\forall x;y;z\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2=0\\y+1=0\\z-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=-1\\z=3\end{cases}}\)
Vậy x = 2 ; y = - 1 ; z = 3
\(\Leftrightarrow x^2+y^2+z^2-4x+2y-6z+14=0\)
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+2y+1\right)+\left(z^2-6z+9\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\y=-1\\z=3\end{cases}}\)
\(\Leftrightarrow x^2+y^2+z^2-4x+2y-6z+14=0\)
\(\Leftrightarrow x^2-4x+4+y^2+2y+1+z^2-6z+9=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=0\)
\(\Leftrightarrow x-2=0;y+1=0;z-3=0\)
\(\Leftrightarrow x=2;y=-1;z=3\)
Đề đúng
\(x^2+y^2+z^2=4x-2y+6z-14\)
\(\Leftrightarrow x^2+y^2+z^2-4x+2y-6z+14=0\)
\(\Leftrightarrow x^2-4x+4+y^2+2y+1+z^2-6z+9=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=0\)
\(\Leftrightarrow x-2=0;y+1=0;z-3=0\)
\(\Leftrightarrow x=2;y=-1;z=3\)
Ta có : \(x^2+y^2\ge2xy\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
Áp dụng vào bài toán có :
\(P\le\frac{x+y}{\frac{\left(x+y\right)^2}{2}}+\frac{y+z}{\frac{\left(y+z\right)^2}{2}}+\frac{z+x}{\frac{\left(z+x\right)^2}{2}}\) \(=\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}=\frac{1}{2}\left(\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\right)\)
Áp dụng BĐT Svacxo ta có :
\(\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\), \(\frac{4}{y+z}\le\frac{1}{y}+\frac{1}{z}\), \(\frac{4}{z+x}\le\frac{1}{z}+\frac{1}{x}\)
Do đó : \(P\le\frac{1}{2}\left[2.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\right]=2016\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{672}\)
P/s : Dấu "=" không chắc lắm :))