Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng t/c dãy tỉ số bằng nhau :\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{x+y+z+t}{3\left(x+y+z+t\right)}=\frac{1}{3}\)
\(\Rightarrow\begin{cases}x+y+z=3t\\y+z+t=3x\\z+t+x=3y\\t+x+y=3z\end{cases}\) => x = y = z = t
Thay vào P được : \(P=1+1+1+1=4\)
Sao thủy
Sao kim
Trái đất
Sao hỏa
Sao mộc
Sao thổ
Sao thiên vương
Sao hải vương
a./ \(\frac{x}{5}=\frac{y}{7}=\frac{z}{4}=\frac{x-y+z}{5-7+4}=\frac{-10}{2}=-5\)
\(\Rightarrow x=-25;y=-35;z=-20\)
b./ \(\frac{x}{5}=\frac{y}{-4}=\frac{z}{-7}=\frac{x+y-z}{5-4-\left(-7\right)}=\frac{-40}{6}=-5\)
\(\Rightarrow x=-25;y=20;z=35\)
Sửa lại đề nha :
\(\frac{x}{3}=\frac{y}{6}=\frac{z}{10}\)
mà x + z = 7 + y
=> x + z - y = 7
Áp dụng tính chất dãy tỉ số bằng ngau ta có :
\(\frac{x}{3}=\frac{y}{6}=\frac{z}{10}=\frac{x+z-y}{3+10-6}=\frac{7}{7}=1\)
\(\Rightarrow\frac{x}{3}=1\Rightarrow x=3.1=3\)
\(\frac{y}{6}=1\Rightarrow y= 6.1=6\)
\(\frac{z}{10}=1\Rightarrow z=10.1=10\)
Vậy x = 3 ; y =6 ; z = 10 .
áp dụng tính chất dãy tỉ số bằng nhau
ta có:\(\frac{x}{3}\)=\(\frac{6}{y}\)=\(\frac{z}{10}\)=\(\frac{x+z}{3+10}\)=\(\frac{7+y}{13}\) =\(\frac{6+7+y}{y+13}\) =\(\frac{y+13}{y+13}\)=1
=>x=3 ; y=6 ; z=10
a; \(\dfrac{-x}{4}\) = \(\dfrac{-2}{x}\)
-\(x.x\) = -2.4
-\(x^2\) = -8
\(x^2\) = 8
\(\left[{}\begin{matrix}x=-\sqrt{8}\\x=\sqrt{8}\end{matrix}\right.\)
Vậy \(x\in\) {-\(\sqrt{8}\); \(\sqrt{8}\)}