Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=4k\end{matrix}\right.\)
Ta có: \(x^2-y^2+2z^2=108\)
\(\Leftrightarrow\left(2k\right)^2-\left(3k\right)^2+2\cdot\left(4k\right)^2=108\)
\(\Leftrightarrow4k^2-9k^2+2\cdot16k^2=108\)
\(\Leftrightarrow k^2=4\)
Trường hợp 1: k=2
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot2=4\\y=3k=3\cdot2=6\\z=4k=4\cdot2=8\end{matrix}\right.\)
Trường hợp 2: k=-2
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot\left(-2\right)=-4\\y=3k=3\cdot\left(-2\right)=-6\\z=4k=4\cdot\left(-2\right)=-8\end{matrix}\right.\)
`#3107.101117`
a)
`x \div y \div z = 4 \div 3 \div 9`
`=> x/4 = y/3 = z/9`
`=> x/4 = (3y)/9 = (4z)/36`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/4 = (3y)/9 = (2z)/8 = (x - 3y + 4z)/(4 - 9 + 36) = 62/31 = 2`
`=> x/4 = y/3 = z/9 = 2`
`=> x = 4*2 = 8` $\\$ `y = 3*2 = 6` $\\$ `z = 9*2 = 18`
Vậy, `x = 8; y = 6; z = 18`
c)
\(x \div y \div z = 1 \div 2 \div 3\)
`=> x/1 = y/2 = z/3`
`=> (4x)/4 = (3y)/6 = (2z)/6`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`(4x)/4 = (3y)/6 = (2z)/6 = (4x - 3y + 2z)/(4 - 6 + 6) = 36/4 = 9`
`=> x/1 = y/2 = z/3 = 9`
`=> x = 1*9=9` $\\$ `y = 2*9 = 18` $\\$ `z = 3*9 = 27`
Vậy, `x = 9; y = 18; z = 27`
Các câu còn lại cậu làm tương tự nhé.
\(\left|x+y+z-4\right|+\left|2x-3y\right|+\left|x+2z\right|=0\)
\(\Rightarrow\hept{\begin{cases}x+y+z=4\\2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\Leftrightarrow\frac{x}{3}.\frac{1}{-2}=\frac{y}{2}.\frac{1}{-2}\Leftrightarrow\frac{x}{-6}=\frac{y}{-4}\\x=-2z\Leftrightarrow\frac{x}{-2}=z\Leftrightarrow\frac{x}{-2}.\frac{1}{3}=\frac{z}{3}\Leftrightarrow\frac{x}{-6}=\frac{z}{3}\end{cases}}\)
\(\Rightarrow\frac{x}{-6}=\frac{y}{-4}=\frac{z}{3}=\frac{x+y+z}{-6+-4+3}=\frac{4}{-7}\)
\(\Rightarrow x=\frac{4}{-7}.-6=\frac{24}{7};y=\frac{4}{-7}.-4=\frac{1}{7};z=\frac{4}{-7}.3=\frac{-12}{7}\)
c: Ta có: 4x=3y=3z
nên \(\dfrac{x}{\dfrac{1}{4}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{3}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{4}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{3}}=\dfrac{x+y+z}{\dfrac{1}{4}+\dfrac{1}{3}+\dfrac{1}{3}}=\dfrac{1975}{\dfrac{11}{12}}=\dfrac{23700}{11}\)
Do đó: \(\left\{{}\begin{matrix}x=\dfrac{5925}{11}\\y=\dfrac{7900}{11}\\z=\dfrac{7900}{11}\end{matrix}\right.\)
Ta có: \(\dfrac{x+2y-z}{z}=\dfrac{y+2z-x}{x}=\dfrac{z+2x-y}{y}\left(x,y,z\ne0\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x+2y-z}{z}=\dfrac{y+2z-x}{x}=\dfrac{z+2x-y}{y}\)
\(=\dfrac{x+2y-z+y+2z-x+z+2x-y}{z+x+y}\)
\(=\dfrac{2x+2y+2z}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\dfrac{x+2y-z}{z}=\dfrac{y+2z-x}{x}=\dfrac{z+2x-y}{y}=2\)
\(\Rightarrow\dfrac{x+2y}{z}-1=\dfrac{y+2z}{x}-1=\dfrac{z+2x}{y}-1=2\)
\(\Rightarrow\dfrac{x+2y}{z}=\dfrac{y+2z}{x}=\dfrac{z+2x}{y}=3\)
\(\Rightarrow\dfrac{x+2y}{z}\cdot\dfrac{y+2z}{x}\cdot\dfrac{z+2x}{y}=3\cdot3\cdot3\)
\(\Rightarrow\dfrac{x+2y}{y}\cdot\dfrac{y+2z}{z}\cdot\dfrac{z+2x}{x}=27\)
\(\Rightarrow\left(\dfrac{x}{y}+2\right)\left(\dfrac{y}{z}+2\right)\left(\dfrac{z}{x}+2\right)=27\)
hay \(P=27\)
Vậy: ...
Theo đề, ta có: \(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{t}=\dfrac{t}{x}\) \(=\dfrac{x+y+z+t}{y+z+t+x}=1\) .
\(\Rightarrow x=y;y=z;z=t;t=x\)
\(\Rightarrow x=y=z=t\)
\(M=\dfrac{2x-y}{z+t}+\dfrac{2y-z}{t+x}+\dfrac{2z-t}{x+y}+\dfrac{2t-x}{y-z}\)
\(M=\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}\)
\(M=\dfrac{1}{2}.4\)
\(M=2\)