K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

\(x^3+y^3+z^3=x+y+z+2017\)

\(\Rightarrow x^3+y^3+z^3-x-y-z=2017\)

\(\Rightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)=2017\)

Đến đây lập luận do x;y;z nguyên

          2017 không chia hết cho 3

=> \(x;y;z\in\varnothing\)

Mình làm không biết có tắt ko

29 tháng 12 2017

Có điều kiện của x;y;z ko vậy?

2 tháng 1 2017

y=x+z-a (a=2016)

y^3=(x+z)^3-a^3-3(x+z).a(x+z-a)

-y^3=-[x^3+z^3+3xz(x+z)-a^3-3(x+z).a(x+z-a)]

-3(x+z)[xz-ay]+2016^3=2017^2

2017 không chia hết cho 3 vô nghiệm nguyên

Bạn test lại xem hay biến đổi nhầm nhỉ

2 tháng 1 2017

Bị lừa rồi.

thực ra rất đơn giản

\(x-y+z=2016\)(1)

\(x^3-y^3+z^3=2017^2\)(2)

(1) số số hạng lẻ phải chắn=> tất cả chẵn (*) hoạc 1 số chẵn(**)

(2) số số hạng lẻ phải lẻ=> vô nghiệm nguyên

5 tháng 11 2016

Ta chứng minh \(x^4+y^4\ge x^3y+xy^3\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left[\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\right]\ge0\)(luôn đúng)

Áp dụng vào bài toán ta có:

\(x^4+y^4\ge x^3y+xy^3\)\(\Rightarrow2\left(x^4+y^4\right)\ge x^4+y^4+x^3y+xy^3\)\(=\left(x^3+y^3\right)\left(x+y\right)\)

\(\Rightarrow\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\).Tương tự ta cũng có:

\(\frac{y^4+z^4}{y^3+z^3}\ge\frac{y+z}{2};\frac{z^4+x^4}{z^3+x^3}\ge\frac{z+x}{2}\)

Cộng theo vế ta có: \(VT\ge\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=x+y+z=1\)

Dấu = khi \(x=y=z=\frac{2008}{3}\)

30 tháng 8 2016

bài x^4-7^y=2014 dùng đồng dư là ra nhé bạn

31 tháng 8 2016

mình cũng chịu

28 tháng 5 2018

Ta thấy: \(x^3+y^3+z^3=\left(x+y+z\right)^3-3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

Thay \(x+y+z=1;x^3+y^3+z^3=1\)ta được:

\(1-3\left(x+y\right)\left(y+z\right)\left(z+x\right)=1\Leftrightarrow-3\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\Leftrightarrow\hept{\begin{cases}x=-y\\y=-z\\z=-x\end{cases}}\)

Xét trường hợp: \(x=-y;\)thay vào đẳng thức: \(x+y+z=1\Rightarrow z=1\)

Do \(x=-y\Rightarrow x^{2017}=-y^{2017}\Rightarrow x^{2017}+y^{2017}=0\)(Số mũ lẻ)

Khi đó \(A=x^{2017}+y^{2017}+z^{2017}=0+z^{2017}\)

Lại có \(z=1\Rightarrow A=0+1=1.\)

Lập luận tương tự với 2 TH còn lại.

Vậy \(A=1.\)

---------
Nếu cả 3 số xyz đều không chia hết cho 2 thì x+y+z không chia hết cho 2 (vô lý)
Ta có: x+y+z ⋮ 6 ⋮ 2

Do đó trong ba số tồn tại một số chia hết cho 2, suy ra xyz ⋮ 2.
Ta có:
M=(x+y)(y+z)(z+x)−2xyz=(x+y+z)(xy+yz+zx)−3xyz
Vì x+y+z ⋮ 6 và xyz ⋮ 2 nên M ⋮ 6

Tick nha 

18 tháng 1 2016

Nếu cả 3 số xyz đều không chia hết cho 2 thì

 x+y+z không chia hết cho 2 (vô lý)
Ta có: x+y+z ⋮ 6 ⋮ 2
Do đó trong ba số tồn tại một số chia hết cho 2,

suy ra xyz ⋮ 2.
Ta có:
M=(x+y)(y+z)(z+x)−2xyz=(x+y+z)(xy+yz+zx)−3xyz
Vì x+y+z ⋮ 6 và xyz ⋮ 2 

nên M ⋮ 6

22 tháng 12 2017

Em tham khảo tại đây nhé.

Câu hỏi của Phạm Minh Tuấn - Toán lớp 8 - Học toán với OnlineMath

23 tháng 12 2017

Còn bài số 2 thì sao cô??

7 tháng 1 2018

\(\dfrac{x}{2017}=\dfrac{y}{2018}=\dfrac{z}{2019}=k\\ \Rightarrow\left\{{}\begin{matrix}x=2017k\\y=2018k\\z=2019k\end{matrix}\right.\)

\(4\left(x-y\right)\left(y-z\right)=4\left(2017k-2018k\right)\left(2018k-2019k\right)=4\left(-k\right)\left(-k\right)=4k^2=\left(2k\right)^2=\left(2019k-2017k\right)^2=\left(z-x\right)^2\left(ĐPCM\right)\)

25 tháng 6 2018
x3+y3+z3 = 3xyz + 2017 \(\Leftrightarrow x^3+y^3+z^3-3xyz=2017\) \(\Leftrightarrow\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2\right]=2017\) \(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2\right]=4034\) 4034 có 4 ước nguyên dương là 1; 2; 2017; 4034. Mà x; y; z là ba số nguyên dương \(\Rightarrow\)x +y+z \(\ge\)3 \(\Rightarrow\)x+y+z = 2017; 4034. *Nếu x+y+z = 4034. \(\Rightarrow\) (x-y)2 + (x-z)2 + (y-z)2 = 1 \(\Rightarrow\left\{{}\begin{matrix}x-y=0\\x-z=0\\\left|y-z\right|=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=z\\\left|y-z\right|=1\end{matrix}\right.\) (loại) *Nếu x+y+z = 2017 \(\Rightarrow\)(x-y)2 + (x-z)2 + (y-z)2 = 2 + TH1: \(\Rightarrow\left\{{}\begin{matrix}x-y=0\\x-z=0\\\left|y-z\right|=\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=z\\\left|y-z\right|=\sqrt{2}\end{matrix}\right.\) (loại) +TH2: \(\Rightarrow\left\{{}\begin{matrix}\left|x-y\right|=1\\\left|x-z\right|=1\\y-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=1\\x-z=-1\\y=z\end{matrix}\right.\)(không mất tính tổng quát) \(\Rightarrow\left\{{}\begin{matrix}x+y+z=2017\\x-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2017-2y\\x=y-1\end{matrix}\right.\) \(\Rightarrow2017-2y=y-1\) \(\Leftrightarrow3y=2016\Leftrightarrow y=672\) \(\Rightarrow x=673;z=672\) Vậy có 1 bộ ba (x;y;z) nguyên dương cần tìm là (672;672;673) và các hoán vị của chúng.