K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2017

 Do x nguyên dương 
TH1:x=1 Giả sử y=<z 
PT<=>2(y+z)=yz-1<=>...<=>(y-2)(z-2)=5 
Giải pt nghiệm nguyên dương được nghiệm (1;3;7) 
TH2:x>=2 
2(y+z)>=2(yz-1) 
<=>yz-y-z =<1 
<=>(y-1)(z-1) =<2 (1) 
Do y,z nguyên dương nên y-1 và z-1 lớn hơn hoặc =0 
=>(y-1)(z-1)>=0 
Kết hợp với (1) có (y-1)(z-1)=0 
hoặc (y-1)(z-1)=1 
hoặc (y-1)(z-1)=2 
Giải các pt nghiệm nguyên trên ta 
KL: pt có các nghiệm (3;5;1),(6;2;1),(4;3;1),(3;1;5),(6;1;2), 
(4;1;3),(2;2;3),(2;3;2),(1;3;7),(1;7;3...

NV
11 tháng 3 2022

\(P=\dfrac{6}{2xy+2yz+2zx}+\dfrac{2}{x^2+y^2+z^2}\ge\dfrac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=8+4\sqrt{3}\)

16 tháng 11 2017

ta có:2(y+z)=x(yz-1)

=>2y+2z=xyz-x

=>2y+2z+x=xyz

mik ko làm tiếp đc do thiếu đ/k

8 tháng 8 2021

? cho a,b,c tìm x,y,z là seo?

8 tháng 8 2021

chắc đề cho x+y+z=1

\(=>\sqrt{x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\)

\(=>\dfrac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\le\dfrac{x}{x+\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}}\)

\(=\dfrac{x}{x+\sqrt{xy}+\sqrt{xz}}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

làm tương tự với \(\dfrac{y}{y+\sqrt{y+xz}},\dfrac{z}{z+\sqrt{z+xy}}\)

\(=>A\le\dfrac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\) dấu"=" xảy ra<=>x=y=z=`/3

NV
30 tháng 12 2021

\(P=\dfrac{1}{y}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\ge\dfrac{1}{y}.\dfrac{4}{x+z}=\dfrac{4}{y\left(x+z\right)}\ge\dfrac{4}{\dfrac{\left(y+x+z\right)^2}{4}}=4\)

\(P_{min}=4\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};1;\dfrac{1}{2}\right)\)

31 tháng 12 2021

Anh ơi! Dấu bằng xảy ra là x+y+z =2 và cái nào nữa ạ anh