K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2018

\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\left(1\right)\)

\(4x=2z\Rightarrow\frac{x}{2}=\frac{z}{4}\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{27}{9}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{4}=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=12\end{cases}}}\)

Vậy.....

Vì 3x=2y, 4x=2z

3x=2y=\(\frac{x}{2}=\frac{y}{3}\)(1)

4x=2z=\(\frac{x}{2}=\frac{z}{4}\)(2)

Từ (1) và (2)=> \(\frac{y}{3}=\frac{x}{2}=\frac{z}{4}\)

Theo tính chất dãy tỉ số bằng nhau.

\(\Rightarrow\frac{x}{2}+\frac{y}{3}+\frac{z}{4}=\frac{z+y+z}{2+3+4}=\frac{27}{9}=3\)

\(\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{4}=3\end{cases}}\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=12\end{cases}}\)

Vậy x=6

       y=9

       z=12

3 tháng 10 2018
a, 4x=5y=> x/5=y/4 => x/5=y/4=3x/15=2y/8 => 3x-2y/15-8=35/7=5( theo tính chất dãy tỉ số bằng nhau) => x=25;y=20 b, x/2=y/3=z/5 =>x+y+z/2+3+5=-90/10=-9(theo tính chất dãy tỉ số bằng nhau) =>x=-18;y=-27;z=-45 c, x:y:z=3:5:(-2) => x/3=y/5=z/-2 =5x/15=y/5=3z/-6 =>5x-y+3z/15-5+(-6)(theo tính chất dãy tỉ số bằng nhau) =124/4=31 =>x=93;y=155;z=-62 Mik sẽ bổ sung sau vì máy mik sắp hết pin

 = (3x-2y)/4 = (2z-4x)/3 = (4y-3z)/2

= (12x-8y)/16 = (6z-12x)/9

= (8y-6z)/4

= (12x-8y + 6z-12x + 8y-6z)/(16+9+4) = 0 
<=> 
{12x - 8y = 0 
{6z - 12x = 0 
{8y - 6z = 0 
<=> 
{x/2 = y/3 
{z/4 = x/2 
{y/3 = z/4 

<=> x/2 = y/3 = z/4 

5 tháng 1 2018

cần tính x,y,z

30 tháng 12 2021

b tham khảo nhé

22 tháng 6 2015

làm xong mà vào viện ah

11 tháng 9 2021

im mom

27 tháng 1 2023

Ai làm được thì giúp mình với ;-;

23 tháng 9 2017

Theo đề bài ta có:
\(\dfrac{4}{3x-2y}=\dfrac{3}{2z-4x}=\dfrac{2}{4y-3z}\)

\(\Rightarrow\)4(2z-4x) = 3(3x-2y)
3(4y-3z) = 2(2z-4x)
Ta có:

4(2z-4x) = 3(3x-2y)\(\Rightarrow\)8z-16x = 9x-6y\(\Rightarrow y=\dfrac{25x-8z}{6}\) (1)

\(\dfrac{3}{2z-4x}=\dfrac{2}{4y-3z}\Rightarrow3\left(4y-3z\right)=2\left(2z-4x\right)\)

\(\Rightarrow12y-9z=4z-8x\Rightarrow12y+8x=13z\) (2)

Thay (1) vào (2) ta có:

2(25x-8z)+8x = 13z\(\Rightarrow\)58x = 29z\(\Rightarrow\)z = 2x\(\Rightarrow\)y = \(\dfrac{3}{2}x\)

Thay vào đề bài x + y- z= - 10 ta tìm được:

x = -10; y = -20; z = -30

13 tháng 10 2020

Ta có : \(\frac{4}{3x-2y}=\frac{3}{2z-4x}=\frac{2}{4y-3z}\) với x+y-z = -10 (1)

\(\Rightarrow4\left(2z-4x\right)=3\left(3x-2y\right)\) ; \(3\left(4y-3z\right)=2\left(2z-4x\right)\)

Ta có :

+) \(4\left(2z-4x\right)=3\left(3x-2y\right)\Rightarrow8z-16x=9x-6y\)\(\Rightarrow y=\frac{25x-8z}{y}\left(2\right)\)

+) \(3\left(4y-3z\right)=2\left(2z-4x\right)\Rightarrow12y-9z=4z-8x\)\(\Rightarrow12y+8x=13z\left(3\right)\)

Thay (1) vào (2) ta có :

\(2\left(25x-8z\right)+8x=13z\)

\(\Rightarrow50x-16z+8x=13z\)

\(\Rightarrow58x=29z\)

\(\Rightarrow2x=z\) (4)

\(\Rightarrow y=\frac{3}{2}x\) (5)

thay (4) và (5) vào biểu thức x+y-z = -10 ta có :

\(x+y-z=-10\Leftrightarrow x+\frac{3}{2}x-2x=-10\)

\(\Rightarrow\frac{1}{2}x=-10\)

\(\Rightarrow x=-20\) ; \(y=\frac{3}{2}\left(-20\right)=-30\) ; \(z=-20\cdot2=-40\)

vậy \(x=-20;y=-30;z=-40\)