Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow-12< x< 2y< 3z\)
\(\Leftrightarrow\left(x,y,z\right)\in\left\{\left(-11;-5;-3\right);\left(-10;-4;-2\right);\left(-9;-4;-2\right);\left(-8;-3;-1\right)\right\}\)
Đề phải là x2014+y2015+z2016 chứ nhỉ? Đề có sai không vậy ạ?
đặt x/2=y/3=z/4=k
=>x=2k;y=3k;z=4k
Ta có: (x+y)2-4(z-x)2=9
<=>(2k+3k)2-4(4k-2k)2=9
<=>(5k)2-4.(2k)2=9
<=>52k2-4.4.k2=9
<=>k2(25-16)=9
<=>k2.9=9<=>k2=1<=>k E {-1;1}
+)k=-1=>x=-2;y=-3;z=-4
+)k=1=>x=2;y=3;z=4
Đáp án C.
Không tồn tại đường thẳng nào trong không gian cắt cả 4 đường thẳng đã cho
a ∈ ( 0 ; π 2 ] , c o t α 2 , c o s α 2 sin 2 α + sin α - 3 = 0 , 2 πa 3 ; 4 πa 2 B S C ^ = 30 ° , A S B ^ = 60 ° , 60 ° , a 42 7 , a 3 3 , u ⇀ = m a ⇀ - 3 b ⇀ , α
Dùng tính chất tỉ lệ thức: a/b = c/d = e/f = (a+b+c)/(b+d+f) (có b+d+f # 0)
* trước tiên ta xét trường hợp x+y+z = 0 có
x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = 0 => x = y = z = 0
* xét x+y+z = 0, tính chất tỉ lệ thức:
x+y+z = x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = (x+y+z)/(2x+2y+2z) = 1/2
=> x+y+z = 1/2 và:
+ 2x = y+z+1 = 1/2 - x + 1 => x = 1/2
+ 2y = x+z+1 = 1/2 - y + 1 => y = 1/2
+ z = 1/2 - (x+y) = 1/2 - 1 = -1/2
Vậy có căp (x,y,z) thỏa mãn: (0,0,0) và (1/2,1/2,-1/2)
dùng tính chất tỉ lệ thức: a/b = c/d = e/f = (a+b+c)/(b+d+f) (có b+d+f # 0)
* trước tiên ta xét trường hợp x+y+z = 0 có
x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = 0 => x = y = z = 0
* xét x+y+z = 0, tính chất tỉ lệ thức:
x+y+z = x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = (x+y+z)/(2x+2y+2z) = 1/2
=> x+y+z = 1/2 và:
+ 2x = y+z+1 = 1/2 - x + 1 => x = 1/2
+ 2y = x+z+1 = 1/2 - y + 1 => y = 1/2
+ z = 1/2 - (x+y) = 1/2 - 1 = -1/2
Vậy có căp (x,y,z) thỏa mãn: (0,0,0) và (1/2,1/2,-1/2)
chúc bạn học tốt