K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2015

Ta có:

\(\left(x-y+z\right)^2=x^2-y^2+z^2\)

\(\Leftrightarrow\) \(x^2+y^2+z^2-2xy-2yz+2xz=x^2-y^2+z^2\)

\(\Leftrightarrow\) \(x^2-y^2+z^2+2y^2-2xy-2yz+2xz=x^2-y^2+z^2\)

Do đó:  \(2y^2-2xy-2yz+2xz=0\)

\(\Leftrightarrow\) \(y^2-xy-yz+xz=0\) 

\(\Leftrightarrow\) \(y\left(y-x\right)-z\left(y-x\right)=0\)

\(\Leftrightarrow\) \(\left(y-x\right)\left(y-z\right)=0\)

\(\Leftrightarrow\)  \(x=y=z\)

Vậy,  khi  \(x=y=z\)  thì \(\left(x-y+z\right)^2=x^2-y^2+z^2\)

 

6 tháng 10 2018

 \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)

Thay số vào tính được \(xy+yz+xz=12\)

Ta có: \(x^2+y^2+z^2=xy+yz+xz\left(=12\right)\)

\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\) 

\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2xz+z^2\right)=0\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)

Từ đó được \(x=y=z\)

Mà \(x+y+z=6\Rightarrow x=y=z=2\)

Chúc bạn học tốt.

26 tháng 6 2016

bài này hoàn toàn có thể cosi dù đề bài chưa cho dương hoac su dung bunhia ngc ( thi ko can quan tam duong hay am)

AH
Akai Haruma
Giáo viên
29 tháng 1 2021

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$(x^2+y^2+z^2)(1+1+1)\geq (x+y+z)^2$

$\Leftrightarrow 3B\geq (x+y+z)^2$

$\Leftrightarrow B\geq \frac{(x+y+z)^2}{3}=\frac{2019^2}{3}=1358787$

Vậy $B_{\min}=1358787$. Giá trị này đạt tại $x=y=z=673$

Áp dụng bđt bunhia cho 2 bộ số (1 ; 1 ; 1) và (x ; y ; z) ta có: 

(1 + 1 + 1).(x² + y² + z²) ≥ (x + y + z)² 

<=> 3(x² + y² + z²) ≥ 36 < do x+y+z=6 theo đề bài > 

<=> x² + y² + z² ≥ 12 => đpcm 

Dấu "=" xảy ra <=> x = y = z = 2 

----------------------------- 

2) xy/z + yz/x + zx/y ≥ x + y + z với x,y,z là các số thực dương 

Áp dụng bđt cô si cho 2 số thực dương ta có: 

xy/z + yz/x ≥ 2y 
yz/x + zx/y ≥ 2z 
xy/z + zx/y ≥ 2x 

Cộng vế với vế 3bđt trên ta được : 

xy/z + yz/x + zx/y ≥ x + y + z => đpcm 

Dấu "=" xảy ra <=> x = y = z 

----------------------------------- 

3) x² + 5y² - 4xy + 2x - 6y +3 > 0 với mọi x , y 

<=> (x² - 4xy + 4y²) + (2x - 4y) + 1 + (y² -2y + 1) + 1 > 0 

<=> [(x - 2y)² + 2(x - 2y) + 1] + (y - 1)² + 1 > 0 

<=> (x - 2y + 1)² + (y - 1)² + 1 > 0 => luôn đúng với mọi x,y 

=> đpcm 

Có gì không hiểu bạn cứ hỏi nhé ^_^

NV
27 tháng 1 2021

\(B=x^2+y^2+z^2\ge\dfrac{1}{3}\left(x+y+z\right)^2=\dfrac{2019^2}{3}\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{2019}{3}\)

27 tháng 1 2021

Này Nguyễn Việt Lâm Giáo viên, mk ko hiểu cái dòng đầu bn có thể giải thích rõ ràng đc ko??

 

28 tháng 1 2021

Áp dụng BĐT AM - GM ta có :

\(B=x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{2019^2}{3}=1358787\)

Dấu "=" xảy ra :

\(\Leftrightarrow x=y=z=\dfrac{2019}{3}\)

Vậy....

NV
19 tháng 12 2020

\(\Leftrightarrow\dfrac{x^2}{2}-\dfrac{x^2}{5}+\dfrac{y^2}{3}-\dfrac{y^2}{5}+\dfrac{z^2}{4}-\dfrac{z^2}{5}=0\)

\(\Leftrightarrow\dfrac{3}{10}x^2+\dfrac{2}{15}y^2+\dfrac{1}{20}z^2=0\)

\(\Leftrightarrow x=y=z=0\)