Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=x^2+y^2+z^2\ge\dfrac{1}{3}\left(x+y+z\right)^2=\dfrac{2019^2}{3}\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{2019}{3}\)
Này Nguyễn Việt Lâm Giáo viên, mk ko hiểu cái dòng đầu bn có thể giải thích rõ ràng đc ko??
Áp dụng BĐT AM - GM ta có :
\(B=x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{2019^2}{3}=1358787\)
Dấu "=" xảy ra :
\(\Leftrightarrow x=y=z=\dfrac{2019}{3}\)
Vậy....
⇔3x2+2y2+2z2+2yz=2⇔3x2+2y2+2z2+2yz=2
⇒2≥3x2+2y2+2z2+y2+z2⇒2≥3x2+2y2+2z2+y2+z2
⇔2≥3(x2+y2+z2)⇔2≥3(x2+y2+z2)
Có: (x+y+z)2≤3(x2+y2+z2)≤2(x+y+z)2≤3(x2+y2+z2)≤2
⇒⇒A2≤2A2≤2 ⇔A∈[−√2;√2]⇔A∈[−2;2]
minA=-1⇔⇔{x+y+z=−√2x=y=z{x+y+z=−2x=y=z ⇒x=y=z=−√23⇒x=y=z=−23
maxA=1⇔{x+y+z=√2x=y=z⇔{x+y+z=2x=y=z ⇒x=y=z=√23
Lời giải:
Đặt \(\frac{x}{a}=m; \frac{y}{b}=n; \frac{z}{c}=p\). Khi đó:
ĐKĐB $\Leftrightarrow \frac{a^2m^2+b^2n^2+c^2p^2}{a^2+b^2+c^2}=m^2+n^2+p^2$
$\Rightarrow a^2m^2+b^2n^2+c^2p^2=(a^2+b^2+c^2)(m^2+n^2+p^2)$
$\Leftrightarrow a^2n^2+a^2p^2+b^2m^2+b^2p^2+c^2m^2+c^2n^2=0$
$\Rightarrow an=ap=bm=bp=cm=cn=0$
Vì $a,b,c\neq 0$ nên $m=n=p=0$
$\Rightarrow x=y=z=0$
Khi đó:
$\frac{x^{2019}+y^{2019}+z^{2019}}{a^{2019}+b^{2019}+c^{2019}}=0$
$\frac{x^{2019}}{a^{2019}}=\frac{y^{2019}}{b^{2019}}=\frac{z^{2019}}{c^{2019}}=0$
$\Rightarrow$ đpcm
ĐKXĐ: \(\left\{{}\begin{matrix}a\ne0\\b\ne0\\c\ne0\end{matrix}\right.\)Ta có: \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)\cdot\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\left(a^2+b^2+c^2\right)\cdot\left(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\right)\)
\(\Leftrightarrow x^2+y^2+z^2=x^2+\dfrac{x^2\cdot\left(b^2+c^2\right)}{a^2}+y^2+\dfrac{y^2\left(a^2+c^2\right)}{b^2}+z^2+\dfrac{z^2\cdot\left(a^2+b^2\right)}{c^2}\)
\(\Leftrightarrow x^2\cdot\dfrac{b^2+c^2}{a^2}+y^2\cdot\dfrac{a^2+c^2}{b^2}+z^2\cdot\dfrac{a^2+b^2}{c^2}=0\)(1)
Vì (1) luôn không âm mà a,b,c≠0
nên x=y=z=0
⇒\(\dfrac{x^{2019}+y^{2019}+z^{2019}}{a^{2019}+b^{2019}+c^{2019}}=\dfrac{0^{2019}+0^{2019}+0^{2019}}{a^{2019}+b^{2019}+c^{2019}}=0\)
mà \(\dfrac{x^{2019}}{a^{2019}}+\dfrac{y^{2019}}{b^{2019}}+\dfrac{z^{2019}}{c^{2019}}=\dfrac{0^{2019}}{a^{2019}}+\dfrac{0^{2019}}{b^{2019}}+\dfrac{0^{2019}}{c^{2019}}=0\)
nên \(\dfrac{x^{2019}+y^{2019}+z^{2019}}{a^{2019}+b^{2019}+c^{2019}}=\dfrac{x^{2019}}{a^{2019}}+\dfrac{y^{2019}}{b^{2019}}+\dfrac{z^{2019}}{c^{2019}}\)
P = x(x/2+1/yz) + y(y/2+1/zx) + z(z/2+1/xy)
= ½ [x(xyz +2)/(yz) + y(xyz +2)/(xz) + z(xyz +2)/(xy)]
= ½ (xyz +2)[x/(yz) + y/(xz) + z/(xy)] ≥ ½ (xyz +2).3 /³√(xyz)
Lại có: xyz + 2 = xyz + 1 +1 ≥ 3 ³√(xyz)
Suy ra:
P = ½ (xyz +2)[x/(yz) + y/(xz) + z/(xy)] ≥ ½ (xyz +2).3 /³√(xyz)
≥ 3/2 .3 ³√(xyz)/ ³√(xyz) = 9/2
Vậy P min = 9/2
Dấu = xra khi x = y = z = 1
Bài 1:
Ta có
A =x/(x+1) +y/(y+1)+z/(z+1)
A= 1- 1/(x+1)+1-1/(y+1) +1-1/(z+1)
A=3- [1/(x+1)+1/(y+1) +1/(z+1) ]
B = 1/(x+1)+1/(y+1) +1/(z+1)
Đặt x+1=a; y+1=b;z+1 =c
=>a+b+c=4
4B=4(1/a+1/b+1/c)
B= (a+b+c) (1/a+1/b+1/c)
4B =3+(a/b+b/a) +(a/c+c/a)+(b/c+c/a)
Từ (a-b)^2 ≥ 0 =>a^2+b^2 ≥ 2ab chia 2 vế cho ab
=> a/b+b/a ≥2 dấu "=" khi a=b
Tương tự có
a/c+c/a ≥2 ;b/c+c/b ≥2
=>4B ≥3+2+2+2=9
=>B ≥ 9/4
=>A ≤ 3-9/4 = 3/4
Vậy max A =3/4 khi a=b=c
=>x=y=z =1/3
Bài 2:
Giúp tui nha
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$(x^2+y^2+z^2)(1+1+1)\geq (x+y+z)^2$
$\Leftrightarrow 3B\geq (x+y+z)^2$
$\Leftrightarrow B\geq \frac{(x+y+z)^2}{3}=\frac{2019^2}{3}=1358787$
Vậy $B_{\min}=1358787$. Giá trị này đạt tại $x=y=z=673$