Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}\left(x-1\right)^{2016}\ge0\\\left(2y-1\right)^{2016}\ge0\\\left|x+2y-z\right|^{2017}\ge0\end{matrix}\right.\Rightarrow\left(x-1\right)^{2016}+\left(2y-1\right)^{2016}+\left|x+2y-z\right|^{2017}\ge0\)
Mà \(\left(x-1\right)^{2017}+\left(2y-1\right)^{2016}+\left|x+2y-z\right|^{2017}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^{2016}=0\\\left(2y-1\right)^{2016}=0\\\left|x+2y-z\right|^{2017}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{2}\\z=2\end{matrix}\right.\)
Ta có :
\(\left(x-1\right)^{2006}\ge0\)
\(\left(2y-1\right)^{2016}\ge0\)
\(\left(x+2y-z\right)^{2017}\ge0\)
Mà \(\left(x-1\right)^{2016}+\left(2y-1\right)^{2016}\)\(+|x+2y-z|^{2017}\)
\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^{2006}=0\\\left(2x-1\right)^{2016}=0\\|x+2y-z|^{2017}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\2y-1=0\\x+2y-z=0\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=1\\2y=1\\1-1-z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2}\\z=2\end{cases}}}\)
Vậy ...
Ta có :
\(\left(x-1\right)^{2006}\ge0\)
\(\left(2y-1\right)^{2016}\ge0\)
\(\left|x+2y-z\right|^{2017}\ge0\)
Mà \(\left(x-1\right)^{2006}+\left(2x-1\right)^{2016}+\left|x+2y-z\right|^{2017}=0\)
Suy ra : \(\hept{\begin{cases}\left(x-1\right)^{2006}=0\\\left(2x-1\right)^{2016}=0\\\left|x+2y-z\right|^{2017}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\2y-1=0\\x+2y-z=0\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=1\\2y=1\\1+1-z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2}\\z=2\end{cases}}}\)
Vậy \(x=1\)\(;\)\(y=\frac{1}{2}\) và \(z=2\)
Chúc bạn học tốt ~
1) Áp dụng tích chất dãy tỉ số bằng nhau ta có:
\(\frac{x+y}{2015}=\frac{xy}{2016}=\frac{x-y}{2017}=\frac{x+y-x+y}{2015-2017}=\frac{2y}{-2}\)
\(=-y\)
\(\Rightarrow xy=-2016y;x+y=-2015y;\)
\(x-y=-2017y\)
\(\Rightarrow-2016y-xy=0\)
\(\Rightarrow y\left(-2016-x\right)=0\)
\(\Rightarrow\orbr{\orbr{\begin{cases}y=0\\-2016-x=0\end{cases}\Rightarrow}}\orbr{\begin{cases}y=0\\x=-2016\end{cases}}\)
\(+) \)\(y=0\Rightarrow0+x=-2015.0=0\Rightarrow x=0\)
\(+) \)\(x=-2016\Rightarrow-2016-y=-2017y\Rightarrow-2016\)
Vậy +) x=y=0
+) x=-2016;y=1
2) Có: \(\frac{2x+2}{3}=\frac{x+1}{1,5};\frac{4z+2}{5}=\frac{z+0,5}{1,25};\frac{3y-1}{4}=\frac{y-\frac{1}{3}}{\frac{4}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+1}{1,5}=\frac{y-\frac{1}{3}}{\frac{4}{3}}=\frac{z+0,5}{1,25}=\frac{x+y+z+\left(1-\frac{1}{3}+0,5\right)}{1,5+\frac{4}{3}+1,25}=\frac{7+\frac{7}{6}}{\frac{49}{12}}=2\)
Suy ra: \(x+1=2.1,5=3\Rightarrow x=2\)
\(y-\frac{1}{3}=2.\frac{4}{3}=\frac{8}{3}\Rightarrow y=3\)
\(z+0,5=2.1,25=2,5\Rightarrow z=2\)
Vậy x=2;y=3;z=2.
\(\frac{3x-2y}{2015}=\frac{2x-4x}{2016}=\frac{4y-3z}{2017}\)
\(\Rightarrow\frac{12x-8y}{8060}=\frac{6z-12x}{6048}=\frac{8y-6z}{4034}=\frac{\left(12x-8y\right)+\left(6z-12x\right)+\left(8y-6z\right)}{8060+6048+4034}=0\)
\(\Leftrightarrow\hept{\begin{cases}3x-2y=0\\2z-4x=0\\4y-3z=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x=2y\\2z=4x\\4y=3z\end{cases}}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{x}{2}=\frac{z}{4}\\\frac{y}{3}=\frac{z}{4}\end{cases}}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\left(k\ne0\right)\)
\(\Rightarrow x=2k;y=3k;z=4k\)
Thay vào P ta có
\(P=\frac{4k^2-2.2k.3k-16k^2}{4k^2+9k^2+16k^2}=\frac{k^2\left(4-12-16\right)}{k^2\left(4+9+16\right)}=-\frac{24}{29}\)
=>(x+2y-3)^2016=0 hoặc |2x+3y-5|=0
x+2y=3 hoặc 2x+3y=5
<=>x=3-2y
Ta có 2x+3y=5=>6-4y+3y=5
6-y=5
y=1
Ta có x+2y=3=>x+2*1=3
x+2=3
x=1
Vậy (x;y) =(1;1)