K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 7 2020

Lời giải:

a)

$(x-z)^2+(y-z)^2+y^2+z^2=2xy-2yz+6z-9$

$\Leftrightarrow x^2-2xz+z^2+(y-z)^2+y^2+z^2-2xy+2yz-6z+9=0$

$\Leftrightarrow x^2-2x(z+y)+(z^2+y^2+2yz)+(y-z)^2+(z^2-6z+9)=0$

$\Leftrightarrow x^2-2x(y+z)+(y+z)^2+(y-z)^2+(z-3)^2=0$

$\Leftrightarrow (x-y-z)^2+(y-z)^2+(z-3)^2=0$
Vì $(x-y-z)^2\geq 0; (y-z)^2\geq 0; (z-3)^2\geq 0$ với mọi $x,y,z\in\mathbb{R}$ nên để tổng của chúng bằng $0$ thì:

$(x-y-z)^2=(y-z)^2=(z-3)^2=0$

$\Rightarrow z=3; y=3; x=6$

b)

$x^2+3y^2+z^2+2xy-2yz-2x+4y+10=0$

$\Leftrightarrow (x^2+2xy+y^2)+(y^2-2yz+z^2)+y^2-2x+4y+10=0$

$\Leftrightarrow (x+y)^2+(y-z)^2+y^2-2(x+y)+6y+10=0$

$\Leftrightarrow (x+y)^2-2(x+y)+1+(y-z)^2+(y^2+6y+9)=0$

$\Leftrightarrow (x+y-1)^2+(y-z)^2+(y+3)^2=0$ (lập luận tương tự phần a)

$\Leftrightarrow y=z=-3; x=4$

19 tháng 7 2018

x^2+2xy+y^2+y^2-2yz+z^2+y^2+4y+4+6-2x=0

(x+y)^2+(y-z)^2+(y+2)^2+2*(3-x)=0

y+2=0=>y=-2

y-z=0=>z=-2 

x+y=0=>x=2

19 tháng 7 2018

<=>(x2+2xy+y2)+(y2-2yz+z2)+(y2+6y+9)-(2x+2y)+1=0

<=>[(x+y)2-2(x+y)+1]+(y-z)2+(y+3)2=0

<=>(x+y-1)2+(y-z)2+(y+3)2=0

Vì \(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}\Rightarrow\left(x+y-1\right)^2+\left(y-z\right)^2+\left(y+3\right)^2\ge0}\)

\(\Rightarrow\hept{\begin{cases}x+y-1=0\\y-z=0\\y+3=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=1\\y-z=0\\y=-3\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\z=-3\\y=-3\end{cases}}}\)

Vậy x=4,y=z=-3

16 tháng 6 2018

yiouoiyy

16 tháng 6 2018

\(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)

Vì \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+5\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)\(\Rightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y+z\right)^2=0\\\left(x+5\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x+5=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y+z=0\\x=-5\\y=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-5\\y=-3\\z=8\end{cases}}}\)

4 tháng 8 2018

b, x+y2+z2 +2x-4y-6z+14=0

<=> (x2+2x+1)+(y2-4y+4)+(z2-6z+9)=0

<=> (x+1)2+(y-2)2+(z-3)2=0

=>(x+1)2=(y-2)2=(z-3)2=0

=>x+1=y-2=z-3=0

=> x=-1; y=2; z=3

c, 2x2+y2-6x-4y+2xy+5=0

<=> (x2+y2+4+2xy-4x-4y)+(x2-2x+1)=0

<=> (x+y-2)2+(x-1)2=0

=> (x+y-2)2=(x-1)2=0

=>x+y-2=x-1=0

=>x=1; y=1

19 tháng 7 2017

2x2 + 2y2 + z2 + 2xy + 2xz + 2yz + 2x + 4y + 5 = 0

<=> (x2 + y2 + z2 + 2xy + 2yz + 2xz) + (x2 + 2x + 1) + (y2 + 4y + 4) = 0

<=> (x + y + z)2 + (x + 1)2 + (y + 2)2 = 0

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=0\\x+1=0\\y+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\\z=3\end{matrix}\right.\)

24 tháng 2 2017

hình như em ghi sai đề rồi em nhé vì câu a không cũng 1 dạng sẽ không đưa về hằng đẳng thức được!