Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(12\left(3z-4y\right)=20\left(4x-5z\right)=15\left(5y-3x\right)\)
\(\Rightarrow\frac{12\left(3z-4y\right)}{60}=\frac{20\left(4x-5z\right)}{60}=\frac{15\left(5y-3x\right)}{60}\)
\(=\frac{3z-4y}{5}=\frac{4x-5z}{3}=\frac{5y-3x}{4}\)
\(\Rightarrow\frac{5.\left(3z-4y\right)}{25}=\frac{3.\left(4x-5z\right)}{9}=\frac{4.\left(5y-3x\right)}{16}\)
\(=\frac{15z-20y}{25}=\frac{12x-15z}{9}=\frac{20y-12x}{16}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{15z-20y}{25}=\frac{12x-15z}{9}=\frac{20y-12x}{16}=\frac{\left(15z-20y\right)+\left(12x-15z\right)+\left(20y-12x\right)}{25+9+16}=\frac{0}{50}=0\)
\(\Rightarrow\begin{cases}15z-20y=0\\12x-15z=0\\20y-12x=0\end{cases}\)\(\Rightarrow12x=20y=15z\)
\(\Rightarrow\frac{12x}{60}=\frac{20y}{60}=\frac{15z}{60}\)
\(=\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}=\frac{z^2}{16}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2+y^2+z^2}{25+9+16}=\frac{50}{50}=1\)
\(\Rightarrow\begin{cases}x^2=1.25=25\\y^2=1.9=9\\z^2=1.16=16\end{cases}\)\(\Rightarrow\begin{cases}x\in\left\{5;-5\right\}\\y\in\left\{3;-3\right\}\\z\in\left\{4;-4\right\}\end{cases}\)
Vậy giá trị (x;y;z) tương ứng thỏa mãn là (5;3;4) ; (-5;-3;-4)
TA CÓ \(\frac{3x-5y}{2}=\frac{7y-3z}{3}=\frac{5z-7x}{4}\)\(=\frac{21x-35y}{14}=\frac{35y-15z}{15}=\frac{15z-21x}{12}\)=\(\frac{21x-35+35y-15z+15z-21x}{14+15+12}=\frac{0}{41}=0\)
=> \(\hept{\begin{cases}3x-5y=0\\7y-3z=0\\5z-7x=0\end{cases}\left(=\right)\hept{\begin{cases}3x=5y\\7y=3z\\5z=7x\end{cases}\left(=\right)\hept{\begin{cases}\frac{x}{5}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{7}\\\frac{z}{7}=\frac{x}{5}\end{cases}}}}\)
=> \(\frac{x}{5}=\frac{y}{3}=\frac{z}{7}=\frac{x+y+z}{5+3+7}=\frac{17}{15}\)
=>\(\hept{\begin{cases}x=\frac{17}{3}\\y=\frac{17}{5}\\z=\frac{119}{15}\end{cases}}\)
ai trả lời được câu này mình cho 5 k
tìm x, biết
10+11+12+13+.....x=5106
\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)
\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)
\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^
Ta có: \(2x=5y\Rightarrow\frac{x}{5}=\frac{y}{2}\)(1)
Mà \(5y=5z\Rightarrow y=z\)(2)
Từ (1) và (2) => \(\frac{x}{5}=\frac{y}{2}=\frac{z}{2}\)
Đề có phải là: x + y - z = 95 ?
Theo t/c dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{2}=\frac{z}{2}=\frac{x+y-z}{5+2-2}=\frac{95}{5}=19\)
=> x/5 = 19 => x = 19.5 = 95
=> y/2 = z/2 = 19 => y = z = 19.2 = 38
Vậy x = 95; y = z = 38.
Ta có:\(\frac{15z-20y}{\frac{5}{12}}=\frac{12x-15z}{\frac{3}{20}}=\frac{20y-12x}{\frac{4}{15}}=0\)
=>3z-4y=0,
4x-5z=0,
5y-3x=0
=>3z=4y,
4x=5z,
5y=3x.
Rồi chuyển thành tỉ số và làm tiếp
Đổi thành \(\frac{3z-4y}{\frac{1}{12}}=\frac{4x-5z}{\frac{1}{20}}=\frac{5y-3x}{\frac{1}{15}}\)
Sau đó áp dụng dãy TSBN rút về x/a=y/b=z/t rồi làm tiếp