Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Trần Ngô Hạ Uyên - Toán lớp 7 - Học toán với OnlineMath
2 (x-1) - 5 (x+2) = -10
2x-2 - 5x+10 = -10
2x-5x-2+10=-10
2x-5x=-10-10+2
-3x=-18
x=6
Vì (x+1).(x-2)=-2
=> (x+1);(x-2) thuộc Ư(-2)={-2;-1;1;2}
Ta có bảng sau:
x+1 | -2 | -1 | 1 | 2 |
x | -3 | -2 | 0 | 1 |
x-2 | 1 | 2 | -2 | -1 |
x | 3 | 4 | 0 | 1 |
Vì x giống nhau nên ta chỉ chọn cặp x giống nhau
=> x=0 và x=1
Mik mới học lớp 6 nên chưa chắc nếu sai thì thông cảm nhé
(x+1) . (x-2) = -2
<=>x2-x-2=-2
<=>x2-x=0
<=>x(x-1)=0
<=>x=0 hoặc x-1=0
<=>x=0 hoặc 1
( x + 1 )( x - 2 ) < 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}}\)( loại )
2. \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}\Leftrightarrow-1< x< 2\)
Vậy với -1 < x < 2 thì ( x + 1 )( x - 2 ) < 0
-5 - ( 3 - 2x ) = 1 + x
-5 - 3 + 2x = 1 + x
2x - x = 1 + 5 + 3
x = 9
Đặt P(x)=0
\(\Leftrightarrow x^2-3x-2=0\)
\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-2\right)=17>0\)
Do đó; Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{17}}{2}\\x_2=\dfrac{3+\sqrt{17}}{2}\end{matrix}\right.\)
vì 5x+1 không là số chẵn
Mà 2y tận cùng là số chẵn
\(\Rightarrow\)2y = 1 \(\Rightarrow\)y = 0
Mà 2y = 1 \(\Rightarrow\)5x+1 = 1 \(\Rightarrow\)x + 1 = 0 \(\Rightarrow\)x = -1
Vậy ...