K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2016

Giả sử có các số nguyên x,y,z thỏa mãn các đẳng thức đã cho. 

Xét x3+xyz=x(x2+yz)=579 --> x là số lẻ.Tương tự xét

y3+xyz=795; z3+xyz=975 ta được y,z là số lẻ

Vậy x3 là 1 số lẻ; xyz là 1 số lẻ, do đó x3+xyz là 1 số chẵn trái với đề bài cho x3+xyz=579 là số lẻ 

Vậy không tồn tại các số nguyên x,y,z thỏa mãn các đẳng thức đã cho.

8 tháng 3 2018

Không mất tính tổng quát giả sử: \(x\ge y\ge z>0\)

Ta có: \(xy\ge yz;xy\ge xz\)

Ta có: \(xy+yz+xz\le3xy\)

\(\Rightarrow xyz\le3xy\Leftrightarrow z\le3\)

Xét với \(z\in\left\{3;2;1\right\}\left(z\in Z^+\right)\)

14 tháng 3 2018

Không mất tính tổng quát giả sử: x≥y≥z>0

Ta có: xy≥yz;xy≥xz

Ta có: xy+yz+xz≤3xy

⇒xyz≤3xy⇔z≤3

Xét với z∈{3;2;1}(z∈Z+)

 ...

Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\)

nên \(\dfrac{x}{10}=\dfrac{y}{15}\)(1)

Ta có: \(\dfrac{y}{5}=\dfrac{z}{4}\)

nên \(\dfrac{y}{15}=\dfrac{z}{12}\)(2)

Từ (1) và (2) suy ra \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)

Đặt \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=10k\\y=15k\\z=12k\end{matrix}\right.\)

Ta có: xyz=1800

\(\Leftrightarrow1800k^3=1800\)

\(\Leftrightarrow k^3=1\)

\(\Leftrightarrow k=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=10\cdot1=10\\y=15\cdot1=15\\z=12\cdot1=12\end{matrix}\right.\)

9 tháng 12 2021

Ko mất tính tổng quát, giả sử \(0< x\le y\le z\)

\(\Leftrightarrow xyz=x+y+z\le3z\\ \Leftrightarrow xyz-3z\le0\\ \Leftrightarrow z\left(xy-3\right)\le0\\ \Leftrightarrow xy\le3\)

Mà \(0< x\le y\Leftrightarrow xy>0\Leftrightarrow xy\in\left\{1;2;3\right\}\)

Với \(xy=1\Leftrightarrow x=y=1\Leftrightarrow z+1+1=z\left(\text{vô nghiệm}\right)\)

Với \(xy=2\Leftrightarrow x=1;y=2\left(x\le y\right)\)

\(\Leftrightarrow3+z=2z\\ \Leftrightarrow z=3\)

Với \(xy=2\Leftrightarrow x=1;y=3\left(x\le y\right)\)

\(\Leftrightarrow1+3+z=3z\\ \Leftrightarrow2z=4\\ \Leftrightarrow z=2\)

Vậy \(\left(x;y;z\right)=\left(1;2;3\right)\) và các hoán vị

9 tháng 12 2021

Tí idol giúp em thêm mấy bài nữa nhé ! yeu

22 tháng 4 2017

x = 100

y = 20

z = 3

14 tháng 2 2018

x=1

y=2

z=3

1 tháng 3 2020

X,Y,Z là 1,2,3 hoặc -1;-2;3 hoặc 0;0;0

4 tháng 5 2018

Xét \(x\le y\le z\) vì x,y,z nguyên dương

\(\Rightarrow xyz\ne0\)và \(x\le y\le z\Rightarrow xyz=x+y+z\le3z\)

\(\Rightarrow xy\le3\Rightarrow xy\in\left\{1;2;3\right\}\)

- Nếu \(xy=1\Rightarrow x=y=1\)ta có: \(2+z=z\)( không thỏa mãn )

- Nếu \(xy=2\Rightarrow x=1;y=2\Rightarrow z=3\)( thỏa mãn ) ( vì \(x\le y\))

- Nếu \(xy=3\Rightarrow x=1;y=3\Rightarrow z=2\)( thỏa mãn ) ( vì \(x\le y\))

Vậy......................................

4 tháng 5 2018

 Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z. 
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 
=> xy thuộc {1 ; 2 ; 3}. 
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí. 
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3. 
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2. 
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).