K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2019

a) 2xy-6x+y=13

<=>2x(y-3)+(y-3)=10

<=>(y-3)(2x+1)=10

=>y-3 và 2x+1 thuộc Ư(10)

=>Ư(10)={-1;1;-2;2;-5;5;-10;10}

Vì 2x+1 luôn lẻ

=>2x+1={-1;1;-5;5}

Ta có bảng sau:

2x+1-11-55
y-3-1010-22
x-10-32
y-71315
NXloạitmloạitm

Vậy các cặp gt (x;y) thỏa mãn là:

(0;13); (2;5)

b) 2xy+2y-x=16

<=>x(2y-1)+(2y-1)=15

<=>(2y-1)(x+1)=15

=>2y-1 và x+1 thuộc Ư(15)

=>Ư(15)={-1;1;-3;3;-5;5;-15;15}

Ta có bảng sau:

x+1-11-33-55-1515
2y-1-1515-55-33-11
x-20-42-64-1614
y-78-23-1201
NXloạitmloạitmloạitmloạitm

Vậy các cặp gt (x;y) thỏa mãn là:

(0;8); (2;3); (4;2); (14;1)

AH
Akai Haruma
Giáo viên
31 tháng 8

Lời giải:

$x-y+2xy=7$

$(x+2xy)-y=7$

$x(1+2y)-y=7$

$2x(1+2y)-2y=14$

$2x(1+2y)-(2y+1)=13$

$(1+2y)(2x-1)=13$

Với $x,y$ nguyên thì $1+2y, 2x-1$ cũng là số nguyên. Mà $(2y+1)(2x-1)=13$ nên $2x-1, 2y+1$ là ước của $13$.
Để $x$ nhỏ nhất thì $2x-1$ là số nguyên nhỏ nhất sao cho $2x-1$ là ước của $13$

$\Rightarrow 2x-1=-13$

$\Rightarrow x=-6$

21 tháng 6 2019

\(9xy-6x+3y=6\)

\(\Leftrightarrow3x.\left(3y-2\right)+3y=6\)

\(\Leftrightarrow3x.\left(3y-2\right)+3y-2=6-2\)

\(\Leftrightarrow3x.\left(3y-2\right)+\left(3y-2\right)=4\)

\(\Leftrightarrow\left(3y-2\right)+\left(3x+1\right)=6\)

Mà \(x,y\in Z\Rightarrow3y-2;3x+1\in Z\)

Lập bảng làm nốt

21 tháng 6 2019

Nhầm dòng thứ 5 sửa số 6 thành số 4 cho anh 

12 tháng 2 2020

b)\(2n-1⋮n+1\)\(\left(n\inℤ\right)\)

\(\Rightarrow2n+2-3⋮n+1\)

\(\Rightarrow2.\left(n+1\right)-3⋮n+1\)\(2.\left(n+1\right)⋮n+1\)

\(\Rightarrow3⋮n+1\)

\(\Rightarrow n+1\inƯ\left(3\right)=\left\{-1;1;-3;3\right\}\)

\(\Rightarrow n+1\in\left\{-1;1;-3;3\right\}\)

\(\Rightarrow n\in\left\{-2;0;-4;2\right\}\)

Vậy \(n\in\left\{-2;0;-4;2\right\}\)

Chúc bạn học tốt !

14 tháng 2 2017

Ta thấy: 6x\(⋮\)3

9y\(⋮\)3

=> 6x-9y\(⋮\)3

Mặt khác 2014 không chia hết cho 3 => không tồn tai x,y thỏa mãn bài toán