Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)
a/
$xy-2x+y=13$
$\Rightarrow x(y-2)+(y-2)=11$
$\Rightarrow (y-2)(x+1)=11$
Với $x,y$ là số nguyên thì $x+1, y-2$ cũng là số nguyên. Mà tích của chúng bằng $11$ nên ta xét các TH sau:
TH1: $x+1=1, y-2=11\Rightarrow x=0; y=13$
TH2: $x+1=-1, y-2=-11\Rightarrow x=-2; y=-9$
TH3: $x+1=11, y-2=1\Rightarrow x=10; y=3$
TH4: $x+1=-11, y-2=-1\Rightarrow x=-12; y=1$
bn vào trang wed này mik chỉ cho, cứ nhắn tin cho mik đi rồi mik sẽ ns.
PT <=> \(\left(x+y\right)^2=xy\left(xy+1\right)\)
Đến đây khó rồi :v ai giúp với:P
Không mất tính tổng quát,giả sử \(\left|x\right|\le\left|y\right|\Rightarrow x^2\le y^2\)
Ta có:\(x^2+xy+y^2\le3x^2\)
Khi đó:\(3x^2\ge x^2y^2\Rightarrow y^2\le3\Rightarrow y\in\left\{1;-1;0\right\}\)
Với \(y=0\Rightarrow x=0\)
Với \(y=1\Rightarrow x^2+x+1=x^2\Rightarrow x=-1\)
Với \(y=-1\Rightarrow x^2-x+1=x^2\Rightarrow x=1\)
Vậy \(\left(x;y\right)=\left(1;-1\right)=\left(-1;1\right)=\left(0;0\right)\)
Các bác check hộ cháu ạ.
(2x-1)*(y-1)=10
suy ra 2x-1=10/(y-1)
suy ra (y-1) thuộc ước của 10.ta có bảng sau:
y-1 |
1 |
-1 |
2 |
-2 |
5 |
-5 |
10 |
-10 |
y |
2 |
0 |
3 |
-1 |
6 |
-4 |
11 |
-9 |
x |
3 |
-4,5 |
13/6 |
-2 |
1/5 |
-0,5 |
1 |
0 |
Kết quả |
Nhận |
Loại |
Loại |
Nhận |
Loại |
Loại |
Nhận |
nhận |
vậy...........................
xy-3x+2y-6=101
=>x.(y-3)+2y-2.3=101
=>x.(y-3)+2.(y-3)=101
=>(x+2).(y-3)=101
Ta thấy: 101=1.101=(-1).(-101)
Ta có bảng sau:
x+2
1
101
-1
-101
x
-1
99
-3
-103
y-3
101
1
-101
-1
y
104
4
-98
2
Vậy (x,y)=(-1,101),(99,4),(-1,-98),(-103,2)